Math books
Revision as of 18:25, 17 June 2018 by Masterproblemsolver123 (talk | contribs) (→Math contest problem books)
These Math books are recommended by Art of Problem Solving administrators and members of the AoPS Community.
Levels of reading and math ability are loosely defined as follows:
- Elementary is for elementary school students up through possibly early middle school.
- Getting Started is recommended for students grades who are participating in contests like AMC 8/10 and Mathcounts.
- Intermediate is recommended for students who can expect to pass the AMC 10/12.
- Olympiad is recommended for high school students who are already studying math at an undergraduate level.
- Collegiate is recommended for college and university students.
More advanced topics are often left with the above levels unassigned.
Before adding any books to this page, please review the AoPSWiki:Linking books page.
Contents
[hide]Books By Subject
Algebra
Getting Started
- AoPS publishes Richard Rusczyk's, David Patrick's, and Ravi Boppana's Prealgebra textbook, which is recommended for advanced elementary and middle school students.
- AoPS publishes Richard Rusczyk's Introduction to Algebra textbook, which is recommended for advanced elementary, middle, and high school students.
Intermediate
- Algebra by I.M. Gelfand and Alexander Shen.
- 101 Problems in Algebra from the Training of the US IMO Team by Titu Andreescu and Zuming Feng
- AoPS publishes Richard Rusczyk's and Mathew Crawford's Intermediate Algebra textbook, which is recommended for advanced middle and high school students.
- Complex Numbers from A to... Z by Titu Andreescu
Analysis
- Counterexamples in Analysis by Bernard R. Gelbaum and John M. H. Olmsted.
Calculus
High School
- AoPS publishes Dr. David Patrick's Calculus textbook, which is recommended for advanced middle and high school students.
- Calculus by Michael Spivak. Top students swear by this book.
- The Hitchhiker's Guide to Calculus by Michael Spivak.
- AP Calculus Problems and Solutions Part II AB and BC -- A fantastic resource for students mastering the material required for the AP exam.
Collegiate
- Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus by Michael Spivak.
Combinatorics
Getting Started
- AoPS publishes Dr. David Patrick's Introduction to Counting & Probability textbook, which is recommended for advanced middle and high school students.
Intermediate
- AoPS publishes Dr. David Patrick's Intermediate Counting & Probability textbook, which is recommended for advanced middle and high school students.
- Mathematics of Choice by Ivan Niven.
- 102 Combinatorial Problems by Titu Andreescu and Zuming Feng.
- A Path to Combinatorics for Undergraduates: Counting Strategies by Titu Andreescu and Zuming Feng.
Olympiad
Collegiate
- Enumerative Combinatorics, Volume 1 by Richard Stanley.
- Enumerative Combinatorics, Volume 2 by Richard Stanley.
- A First Course in Probability by Sheldon Ross
Geometry
Getting Started
- AoPS publishes Richard Rusczyk's Introduction to Geometry textbook, which is recommended for advanced middle and high school students.
Intermediate
- Challenging Problems in Geometry -- A good book for students who already have a solid handle on elementary geometry.
- Geometry Revisited -- A classic.
- 106 Geometry Problems from the AwesomeMath Summer Program by Titu Andreescu, Michal Rolinek, and Josef Tkadlec
Olympiad
- Euclidean Geometry in Mathematical Olympiads by Evan Chen
- Geometry Revisited -- A classic.
- Geometry of Complex Numbers by Hans Schwerfdtfeger.
- Geometry: A Comprehensive Course by Dan Pedoe.
- Non-Euclidean Geometry by H.S.M. Coxeter.
- Projective Geometry by H.S.M. Coxeter.
- Geometric Transformations I, Geometric Transformations II, and Geometric Transformations III by I. M. Yaglom.
- 107 Geometry Problems from the AwesomeMath Year-Round Program Titu Andreescu, Michal Rolinek, and Josef Tkadlec
Collegiate
- Geometry of Complex Numbers by Hans Schwerfdtfeger.
- Geometry: A Comprehensive Course by Dan Pedoe.
- Non-Euclidean Geometry by H.S.M. Coxeter.
- Projective Geometry by H.S.M. Coxeter.
Inequalities
Intermediate
Olympiad
- The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities by J. Michael Steele.
- Problem Solving Strategies by Arthur Engel contains significant material on inequalities.
- Titu Andreescu's Book on Geometric Maxima and Minima
- Topics in Inequalities by Hojoo Lee
- Olympiad Inequalities by Thomas Mildorf
- A<B (A is less than B) by Kiran S. Kedlaya
- Secrets in Inequalities vol 1 and 2 by Pham Kim Hung
Collegiate
- Inequalities by G. H. Hardy, J. E. Littlewood, and G. Polya.
Number Theory
Introductory
- The AoPS Introduction to Number Theory by Mathew Crawford.
Olympiad
- Number Theory: A Problem-Solving Approach by Titu Andreescu and Dorin Andrica.
- 104 Number Theory Problems from the Training of the USA IMO Team by Titu Andreescu, Dorin Andrica and Zuming Feng.
- Problems in Elementary Number Theory by Hojoo Lee.
Trigonometry
Getting Started
- Trigonometry by I.M. Gelfand and Mark Saul.
Intermediate
- Trigonometry by I.M. Gelfand and Mark Saul.
- 103 Trigonometry Problems by Titu Andreescu and Zuming Feng.
Olympiad
Problem Solving
Getting Started
- the Art of Problem Solving Volume 1 by Sandor Lehoczky and Richard Rusczyk is recommended for avid math students in grades 7-9.
- Mathematical Circles -- A wonderful peak into Russian math training.
- 100 Great Problems of Elementary Mathematics by Heinrich Dorrie.
Intermediate
- the Art of Problem Solving Volume 2 by Sandor Lehoczky and Richard Rusczyk is recommended for avid math students in grades 9-12.
- The Art and Craft of Problem Solving by Paul Zeitz, former coach of the U.S. math team.
- How to Solve It by George Polya.
- A Mathematical Mosaic by Putnam Fellow Ravi Vakil.
- Proofs Without Words, Proofs Without Words II
- Sequences, Combinations, Limits
- 100 Great Problems of Elementary Mathematics by Heinrich Dorrie.
Olympiad
- Mathematical Olympiad Challenges
- Problem Solving Strategies by Arthur Engel.
- Problem Solving Through Problems by Loren Larson.
General interest
- The Code Book by Simon Singh.
- Count Down by Steve Olson.
- Fermat's Enigma by Simon Singh.
- Godel, Escher, Bach
- Journey Through Genius by William Dunham.
- A Mathematician's Apology by G. H. Hardy.
- The Music of the Primes by Marcus du Sautoy.
- Proofs Without Words by Roger B. Nelsen.
- What is Mathematics?by Richard Courant, Herbert Robbins and Ian Stewart.
Math Contest Problem Books
Elementary School
- Mathematical Olympiads for Elementary and Middle Schools (MOEMS) publishes two excellent contest problem books.
Getting Started
- MathCounts books -- Practice problems at all levels from the MathCounts competition.
- Contest Problem Books from the AMC.
- More Mathematical Challenges by Tony Gardiner. Over 150 problems from the UK Junior Mathematical Olympiad, for students ages 11-15.
Intermediate
- The Mandelbrot Competition has two problem books for sale at AoPS.
- ARML books:
- Five Hundred Mathematical Challenges -- An excellent collection of problems (with solutions).
- The USSR Problem Book
- Leningrad Olympiads (Published by MathProPress.com)
Olympiad
- USAMO 1972-1986 -- Problems from the United States of America Mathematical Olympiad.
- The IMO Compendium: A Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2004
- Mathematical Olympiad Challenges
- Problem Solving Strategies by Arthur Engel.
- Problem Solving Through Problems by Loren Larson.
- Hungarian Problem Book III
- Mathematical Miniatures
- Mathematical Olympiad Treasures
- Collections of Olympiads (APMO, China, USSR to name the harder ones) published by MathProPress.com.
Collegiate
- Three Putnam competition books are available at AoPS.