1953 AHSME Problems/Problem 28

Revision as of 16:00, 20 July 2018 by Awesome yz (talk | contribs) (Created page with "==Problem 28== In <math>\triangle ABC</math>, sides <math>a,b</math> and <math>c</math> are opposite <math>\angle{A},\angle{B}</math> and <math>\angle{C}</math> respectively....")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 28

In $\triangle ABC$, sides $a,b$ and $c$ are opposite $\angle{A},\angle{B}$ and $\angle{C}$ respectively. $AD$ bisects $\angle{A}$ and meets $BC$ at $D$. Then if $x = \overline{CD}$ and $y = \overline{BD}$ the correct proportion is:

$\textbf{(A)}\ \frac {x}{a} = \frac {a}{b + c} \qquad \textbf{(B)}\ \frac {x}{b} = \frac {a}{a + c} \qquad \textbf{(C)}\ \frac{y}{c}=\frac{c}{b+c}\\ \textbf{(D)}\ \frac{y}{c}=\frac{a}{b+c}\qquad \textbf{(E)}\ \frac{x}{y}=\frac{c}{b}$

Solution

[asy]pair A,B,C,D; A = (5,6); B = (9,0); C = (0,0); D = (B+C)/2; draw(D--A--B--C--A); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE);  label("$D$",D,S); label("$b$",(A+C)/2,NW); label("$c$",(B+A)/2,NE); label("$x$",(C+D)/2,S); label("$y$",(D+B)/2,S);[/asy] By the Angle Bisector Theorem, $\frac{x}{b}=\frac{y}{c}$. Because of this, $\frac{x}{b}$ must equal $\frac{ky}{kc}$, where $k$ is some real number. Therefore, $\frac{x+y}{b+c}=\frac{y+ky}{c+kc}$. Factoring $\frac{k+1}{k+1}$ out, we get $\frac{y}{c}=\frac{x+y}{b+c}$. However, $x+y=a$, so the answer is $\textbf{(D)}\ \frac{y}{c}=\frac{a}{b+c}$.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 27
Followed by
Problem 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png