2000 AIME I Problems/Problem 7

Revision as of 10:23, 21 July 2018 by Flyhawkeye (talk | contribs) (Added Solution)

Problem

Suppose that $x,$ $y,$ and $z$ are three positive numbers that satisfy the equations $xyz = 1,$ $x + \frac {1}{z} = 5,$ and $y + \frac {1}{x} = 29.$ Then $z + \frac {1}{y} = \frac {m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.


Solution 1

We can rewrite $xyz=1$ as $\frac{1}{z}=xy$.

Substituting into one of the given equations, we have \[x+xy=5\] \[x(1+y)=5\] \[\frac{1}{x}=\frac{1+y}{5}.\]

We can substitute back into $y+\frac{1}{x}=29$ to obtain \[y+\frac{1+y}{5}=29\] \[5y+1+y=145\] \[y=24.\]

We can then substitute once again to get \[x=\frac15\] \[y=\frac{5}{24}.\] Thus, $z+\frac1y=\frac{5}{24}+\frac{1}{24}=\frac{1}{4}$, so $m+n=\boxed{005}$.


Solution 2

Let $r = \frac{m}{n} = z + \frac {1}{y}$.

\begin{align*} (5)(29)(r)&=\left(x + \frac {1}{z}\right)\left(y + \frac {1}{x}\right)\left(z + \frac {1}{y}\right)\\ &=xyz + \frac{xy}{y} + \frac{xz}{x} + \frac{yz}{z} + \frac{x}{xy} + \frac{y}{yz} + \frac{z}{xz} + \frac{1}{xyz}\\ &=1 + x + z + y + \frac{1}{y} + \frac{1}{z} + \frac{1}{x} + \frac{1}{1}\\ &=2 + \left(x + \frac {1}{z}\right) + \left(y + \frac {1}{x}\right) + \left(z + \frac {1}{y}\right)\\ &=2 + 5 + 29 + r\\ &=36 + r \end{align*}

Thus $145r = 36+r \Rightarrow 144r = 36 \Rightarrow r = \frac{36}{144} = \frac{1}{4}$. So $m + n = 1 + 4 = \boxed{5}$.

Solution 2

Since $x+(1/z)=5, 1=z(5-x)=xyz$, so $5-x=xy$. Also, $y=29-(1/x)$ by the second equation. Substitution gives $x=1/5$, $y=24$, and $z=5/24$, so the answer is 4+1 which is equal to $5$.

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png