Difference between revisions of "1975 AHSME Problems/Problem 13"

(Created page with "==Problem== The equation <math>x^6 - 3x^5 - 6x^3 - x + 8 = 0</math> has <math> \textbf{(A)} \text{ no real roots} \\ \textbf{(B)} \text{ exactly two distinct negative roots}...")
 
(Added solution)
 
Line 6: Line 6:
 
\textbf{(B)} \text{ exactly two distinct negative roots} \\
 
\textbf{(B)} \text{ exactly two distinct negative roots} \\
 
\textbf{(C)} \text{ exactly one negative root} \\
 
\textbf{(C)} \text{ exactly one negative root} \\
\textbf{(D)} \text{ no negative roots, but at least one positive roots} \\
+
\textbf{(D)} \text{ no negative roots, but at least one positive root} \\
 
\textbf{(E)} \text{ none of these}
 
\textbf{(E)} \text{ none of these}
 
</math>
 
</math>
  
 
==Solution==
 
==Solution==
nothing yet :(
+
Let <math>P(x) = x^6 - 3x^5 - 6x^3 - x + 8</math>. When <math>x < 0</math>, <math>P(x) > 0</math>. Therefore, there are no negative roots.
 +
 
 +
Notice that <math>P(1) = -1</math> and <math>P(0) = 8</math>. There must be at least one positive root between 0 and 1, therefore the answer is <math>\boxed{\textbf{(D)}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AHSME box|year=1975|num-b=12|num-a=14}}
 
{{AHSME box|year=1975|num-b=12|num-a=14}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:51, 5 January 2022

Problem

The equation $x^6 - 3x^5 - 6x^3 - x + 8 = 0$ has

$\textbf{(A)} \text{ no real roots} \\ \textbf{(B)} \text{ exactly two distinct negative roots} \\ \textbf{(C)} \text{ exactly one negative root} \\ \textbf{(D)} \text{ no negative roots, but at least one positive root} \\ \textbf{(E)} \text{ none of these}$

Solution

Let $P(x) = x^6 - 3x^5 - 6x^3 - x + 8$. When $x < 0$, $P(x) > 0$. Therefore, there are no negative roots.

Notice that $P(1) = -1$ and $P(0) = 8$. There must be at least one positive root between 0 and 1, therefore the answer is $\boxed{\textbf{(D)}}$.

See Also

1975 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png