# 1975 AHSME Problems/Problem 2

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

For which real values of m are the simultaneous equations \begin{align*}y &= mx + 3 \\ y& = (2m - 1)x + 4\end{align*}

satisfied by at least one pair of real numbers $(x,y)$? $\textbf{(A)}\ \text{all }m\qquad \textbf{(B)}\ \text{all }m\neq 0\qquad \textbf{(C)}\ \text{all }m\neq 1/2\qquad \textbf{(D)}\ \text{all }m\neq 1\qquad \textbf{(E)}\ \text{no values of }m$

## Solution

Solution by e_power_pi_times_i

Solving the systems of equations, we find that $mx+3 = (2m-1)x+4$, which simplifies to $(m-1)x+1 = 0$. Therefore $x = \dfrac{1}{1-m}$. $x$ is only a real number if $\boxed{\textbf{(D) }m\neq 1}$.

## See Also

 1975 AHSME (Problems • Answer Key • Resources) Preceded byProblem 1 Followed byProblem 3 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS