# 1975 AHSME Problems/Problem 3

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Which of the following inequalities are satisfied for all real numbers $a, b, c, x, y, z$ which satisfy the conditions $x < a, y < b$, and $z < c$? $\text{I}. \ xy + yz + zx < ab + bc + ca \\ \text{II}. \ x^2 + y^2 + z^2 < a^2 + b^2 + c^2 \\ \text{III}. \ xyz < abc$ $\textbf{(A)}\ \text{None are satisfied.} \qquad \textbf{(B)}\ \text{I only} \qquad \textbf{(C)}\ \text{II only} \qquad \textbf{(D)}\ \text{III only} \qquad \textbf{(E)}\ \text{All are satisfied.}$

## Solution

Solution by e_power_pi_times_i

Notice if $a$, $b$, and $c$ are $0$, then we can find $x$, $y$, and $z$ to disprove $\text{I}$ and $\text{II}$. For example, if $(a, b, c, x, y, z) = (0, 0, 0, -1, -1, -1)$, then $\text{I}$ and $\text{II}$ are disproved. If $(a, b, c, x, y, z) = (0, 1, 2, -1, -1, 1)$, then $\text{III}$ is disproved. Therefore the answer is $\boxed{\textbf{(A) } \text{None are satisfied}}$.

## See Also

 1975 AHSME (Problems • Answer Key • Resources) Preceded byProblem 2 Followed byProblem 4 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS