Difference between revisions of "1976 AHSME Problems/Problem 27"

m (Undo revision 161859 by MRENTHUSIASM (talk))
(Tag: Undo)
m (Solution 2)
Line 41: Line 41:
 
We rewrite each term in the numerator separately:
 
We rewrite each term in the numerator separately:
 
<ol style="margin-left: 1.5em;">
 
<ol style="margin-left: 1.5em;">
   <li>Let <math>\sqrt{a}+\sqrt{b}=\sqrt{3+\sqrt{5}}</math> for some nonnegative rational numbers <math>a</math> and <math>b.</math> We square both sides of this equation, then simplify:
+
   <li>Let <math>\sqrt{a}+\sqrt{b}=\sqrt{3+\sqrt{5}}</math> for some nonnegative rational numbers <math>a</math> and <math>b.</math> We square both sides of this equation, then match up expressions:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
a+b+2\sqrt{ab}&=3+\sqrt{5} \\
 
a+b+2\sqrt{ab}&=3+\sqrt{5} \\

Revision as of 03:48, 8 September 2021

Problem

If \[N=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}},\] then $N$ equals

$\textbf{(A) }1\qquad \textbf{(B) }2\sqrt{2}-1\qquad \textbf{(C) }\frac{\sqrt{5}}{2}\qquad \textbf{(D) }\sqrt{\frac{5}{2}}\qquad \textbf{(E) }\text{none of these}$

Solution 1

Let $x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}$ and $y=\sqrt{3-2\sqrt{2}}.$ Clearly, $x$ and $y$ are both positive.

Note that \begin{align*} x^2&=\frac{\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)^2}{\left(\sqrt{\sqrt{5}+1}\right)^2} \\ &=\frac{\left(\sqrt{5}+2\right)+2\cdot\left(\sqrt{\sqrt{5}+2}\cdot\sqrt{\sqrt{5}-2}\right)+\left(\sqrt{5}-2\right)}{\sqrt{5}+1} \\ &=\frac{\left(\sqrt{5}+2\right)+2+\left(\sqrt{5}-2\right)}{\sqrt{5}+1} \\ &=\frac{2\sqrt{5}+2}{\sqrt{5}+1} \\ &=2, \end{align*} from which $x=\sqrt{2}.$

On the other hand, note that \begin{align*} y&=\sqrt{3-2\sqrt{2}} \\ &=\sqrt{2-2\sqrt{2}+1} \\ &=\sqrt{\left(\sqrt{2}-1\right)^2} \\ &=\sqrt{2}-1. \end{align*} Finally, the answer is $N=x-y=\boxed{\textbf{(A) }1}.$

~Someonenumber011 (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Solution 2

Let $x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}$ and $y=\sqrt{3-2\sqrt{2}}.$ Clearly, $x$ and $y$ are both positive.

Note that \[x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\cdot\frac{\sqrt{\sqrt{5}-1}}{\sqrt{\sqrt{5}-1}}=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{2}. \hspace{15mm} (\bigstar)\] We rewrite each term in the numerator separately:

  1. Let $\sqrt{a}+\sqrt{b}=\sqrt{3+\sqrt{5}}$ for some nonnegative rational numbers $a$ and $b.$ We square both sides of this equation, then match up expressions: \begin{align*} a+b+2\sqrt{ab}&=3+\sqrt{5} \\ a+b+\sqrt{4ab}&=3+\sqrt{5}. \end{align*} It follows that \begin{align*} a+b&=3, \\ ab&=\frac54. \end{align*} By inspection, we get $\{a,b\}=\left\{\frac12,\frac52\right\}.$ Alternatively, we conclude that $a$ and $b$ are the solutions to the quadratic equation $t^2-3t+\frac54=0$ by Vieta's Formulas, in which $t=\frac12,\frac52.$

    Therefore, we obtain \[\sqrt{3+\sqrt{5}}=\sqrt{\frac12}+\sqrt{\frac52}=\frac{\sqrt2}{2}+\frac{\sqrt{10}}{2}.\]

  2. Similarly, we obtain \[\sqrt{7-3\sqrt{5}}=\frac{3\sqrt2}{2}-\frac{\sqrt{10}}{2}.\]

Substituting these results into $(\bigstar),$ we have \[x=\frac{\left(\frac{\sqrt2}{2}+\frac{\sqrt{10}}{2}\right)+\left(\frac{3\sqrt2}{2}-\frac{\sqrt{10}}{2}\right)}{2}=\sqrt2.\] On the other hand, we have \[y=\sqrt2-1\] by the argument of either Solution 1 or Solution 2.

Finally, the answer is $N=x-y=\boxed{\textbf{(A) }1}.$

~MRENTHUSIASM

See also

1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png