1976 AHSME Problems/Problem 3

Revision as of 22:11, 6 February 2023 by Megaboy6679 (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 3

The sum of the distances from one vertex of a square with sides of length $2$ to the midpoints of each of the sides of the square is

$\textbf{(A) }2\sqrt{5}\qquad \textbf{(B) }2+\sqrt{3}\qquad \textbf{(C) }2+2\sqrt{3}\qquad \textbf{(D) }2+\sqrt{5}\qquad \textbf{(E) }2+2\sqrt{5}$

Solution

The lengths to the side are $1, \sqrt{2^2+1^2}, \sqrt{2^2+1^2}, 1$, respectively. Therefore, the sum is $\boxed{\textbf{(E) } 2+2\sqrt{5}}$. ~MathJams


1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
1975 AHSME
Followed by
1977 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions