Difference between revisions of "1978 AHSME Problems/Problem 20"

(The solution has some flaws. If b=c, then it is possible for (a,b,c)=(-2t,t,t), from which we obtain the correct answer -1. I will rewrite a solution with complete symmetry.)
Line 8: Line 8:
 
\textbf{(E) }-8    </math>  
 
\textbf{(E) }-8    </math>  
  
==Solution 2==
+
==Solution==
We equate the first two expressions (More generally, we can equate any two expressions): <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}.</cmath>
+
<b>EDITING IN PROGRESS</b>
We add <math>1</math> to both sides, then rearrange:
 
<cmath>\begin{align*}
 
\frac{a+b}{c} &= \frac{a+c}{b} \\
 
ab+b^2 &= ac+c^2 \\
 
\bigl(ab-ac\bigr)+\bigl(b^2-c^2\bigr) &= 0 \\
 
a(b-c)+(b+c)(b-c) &= 0 \\
 
(a+b+c)(b-c) &= 0,
 
\end{align*}</cmath>
 
from which <math>a+b+c=0</math> or <math>b=c.</math>
 
 
 
* If <math>a+b+c=0,</math> then <math>x=\frac{(-c)(-a)(-b)}{abc}=-1.</math>
 
 
 
* If <math>b=c,</math> then <math>x=\frac{(a+b)(b+c)(c+a)}{abc}</math>
 
 
 
~Pega969 (Solution)
 
 
 
~MRENTHUSIASM (Revision)
 
 
 
The second solution gives us <math>a=b=c</math>, and <math>x=\frac{8a^3}{a^3}=8</math>, which is not negative, so this solution doesn't work.
 
 
 
Therefore, <math>x=-1\Rightarrow\boxed{A}</math>.
 
  
<b>EDITING IN PROGRESS</b>
+
~MRENTHUSIASM
  
 
== See also ==
 
== See also ==

Revision as of 22:35, 4 September 2021

Problem 20

If $a,b,c$ are non-zero real numbers such that \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] and \[x=\frac{(a+b)(b+c)(c+a)}{abc},\] and $x<0,$ then $x$ equals

$\textbf{(A) }-1\qquad \textbf{(B) }-2\qquad \textbf{(C) }-4\qquad \textbf{(D) }-6\qquad  \textbf{(E) }-8$

Solution

EDITING IN PROGRESS

~MRENTHUSIASM

See also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png