Difference between revisions of "1983 AIME Problems/Problem 11"

Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
The solid shown has a square base of side length <math>s</math>. The upper edge is parallel to the base and has length <math>2s</math>. All edges have length <math>s</math>. Given that <math>s=6\sqrt{2}</math>, what is the volume of the solid?
 
The solid shown has a square base of side length <math>s</math>. The upper edge is parallel to the base and has length <math>2s</math>. All edges have length <math>s</math>. Given that <math>s=6\sqrt{2}</math>, what is the volume of the solid?
[img]http://www.artofproblemsolving.com/Forum/album_pic.php?pic_id=791&sid=cfd5dae222dd7b8944719b56de7b8bf7[/img]
+
[[Image:1983Number11.JPG]]
 
 
{{image}}
 
  
 
== Solution ==
 
== Solution ==

Revision as of 02:40, 21 January 2007

Problem

The solid shown has a square base of side length $s$. The upper edge is parallel to the base and has length $2s$. All edges have length $s$. Given that $s=6\sqrt{2}$, what is the volume of the solid? 1983Number11.JPG

Solution

First, we find the height of the figure by drawing a perpendicular from the midpoint of $AD$ to $EF$. The hypotenuse of the triangle is the median of equilateral triangle $ADE$ one of the legs is $3\sqrt{2}$. We apply the pythagorean theorem to find that the height is equal to $6$.

Next, we complete the figure into a triangular prism, and find the area, which is $\frac{6\sqrt{2}\cdot 12\sqrt{2}\cdot 6}{2}=432$.

Now, we subtract off the two extra pyramids that we included, whose combined area is $2\cdot \left( \frac{12\sqrt{2}\cdot 3\sqrt{2} \cdot 6}{3} \right)=144$.

Thus, our answer is $432-144=288$.


See also

Invalid username
Login to AoPS