Difference between revisions of "1988 AIME Problems"

m (Problem 2)
(Problem 9)
Line 35: Line 35:
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
Find the smallest positive integer whose [[perfect cube|cube]] ends in <tt>888</tt>.
  
 
[[1988 AIME Problems/Problem 9|Solution]]
 
[[1988 AIME Problems/Problem 9|Solution]]

Revision as of 13:47, 24 October 2007

Problem 1

One commercially available ten-button lock may be opened by depressing -- in any order -- the correct five buttons. The sample shown below has $\{1, 2, 3, 6, 9\}$ as its combination. Suppose that these locks are redesigned so that sets of as many as nine buttons or as few as one button could serve as combinations. How many additional combinations would this allow? 1988-1.png

Solution

Problem 2

For any positive integer $k$, let $f_1(k)$ denote the square of the sum of the digits of $k$. For $n \ge 2$, let $f_n(k) = f_1(f_{n - 1}(k))$. Find $f_{1988}(11)$.

Solution

Problem 3

Solution

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution

Problem 7

Solution

Problem 8

Solution

Problem 9

Find the smallest positive integer whose cube ends in 888.

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

See also

Invalid username
Login to AoPS