Difference between revisions of "1990 AIME Problems/Problem 5"

m (c)
m (bit better)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
The [[prime factorization]] of <math>75 = 3^15^2</math>. Thus, for <math>n</math> to have exactly <math>75</math> integral divisors, we need to have <math>n = a^{x-1}b^{y-1}\ldots</math> such that <math>x \cdot y \cdot \ldots = 75</math>. Since we know that <math>n</math> is [[divisible]] by <math>75</math>, two of the [[prime]] [[factor]]s must be <math>3</math> and <math>5</math>. To minimize <math>n</math>, a third factor which is less than <math>5</math> can be used; the only possible [[prime]] number is <math>2</math>. Also to minimize <math>n</math>, we want <math>5</math>, the greatest of all the factors, to be raised to the least power. Therefore, <math>n = 2^43^45^2</math> and <math>\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = 432</math>.
+
The [[prime factorization]] of <math>75 = 3^15^2 = (2+1)(4+1)(4+1)</math>. For <math>n</math> to have exactly <math>75</math> integral divisors, we need to have <math>n = p_1^{e_1-1}p_2^{e_2-1}\cdots</math> such that <math>e_1e_2 \cdots = 75</math>. Since <math>75|n</math>, two of the [[prime]] [[factor]]s must be <math>3</math> and <math>5</math>. To minimize <math>n</math>, we can introduce a third prime factor, <math>2</math>. Also to minimize <math>n</math>, we want <math>5</math>, the greatest of all the factors, to be raised to the least power. Therefore, <math>n = 2^43^45^2</math> and <math>\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = \boxed{432}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 18:47, 11 April 2008

Problem

Let $n^{}_{}$ be the smallest positive integer that is a multiple of $75_{}^{}$ and has exactly $75_{}^{}$ positive integral divisors, including $1_{}^{}$ and itself. Find $n/75^{}_{}$.

Solution

The prime factorization of $75 = 3^15^2 = (2+1)(4+1)(4+1)$. For $n$ to have exactly $75$ integral divisors, we need to have $n = p_1^{e_1-1}p_2^{e_2-1}\cdots$ such that $e_1e_2 \cdots = 75$. Since $75|n$, two of the prime factors must be $3$ and $5$. To minimize $n$, we can introduce a third prime factor, $2$. Also to minimize $n$, we want $5$, the greatest of all the factors, to be raised to the least power. Therefore, $n = 2^43^45^2$ and $\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = \boxed{432}$.

See also

1990 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions