# 1996 AHSME Problems/Problem 14

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Let $E(n)$ denote the sum of the even digits of $n$. For example, $E(5681) = 6+8 = 14$. Find $E(1)+E(2)+E(3)+\cdots+E(100)$ $\text{(A)}\ 200\qquad\text{(B)}\ 360\qquad\text{(C)}\ 400\qquad\text{(D)}\ 900\qquad\text{(E)}\ 2250$

## Solution

The problem is asking for the sum of all the even digits in the numbers $1$ to $100$. We can remove $100$ from the list, add $00$ to the list, and tack on some leading zeros to the single digit numbers without changing the sum of the even digits. This gives the list: $00, 01, 02, 03, ..., 10, 11, ..., 98, 99$.

There are $2\cdot 100 = 200$ digits on that list, and each digit appears $\frac{200}{10} = 20$ times.

Thus, each even digit appears $20$ times, and the sum of all the even digits is $0 \cdot 20 + 2\cdot 20 + 4\cdot 20 + 6\cdot 20 + 8\cdot 20 = (0 + 2 + 4 + 6 + 8)\cdot 20 = 400$, and the correct answer is $\boxed{C}$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 