Difference between revisions of "2000 USAMO Problems/Problem 1"
(solution?) |
m (→See also) |
||
Line 13: | Line 13: | ||
Let <math>g(a) = \frac{f(a+b) - f(a)}{b}</math>, which is the slope of the secant between <math>(a,f(a))(a+b,f(a+b))</math>. Let <math>b</math> be arbitrarily small; then it follows that <math>g(a+b) - g(a) > 4</math>, <math>g(a+2b) - g(a+b) > 4,\, \cdots, g(a+kb) - g(a+ [k-1]b) > 4</math>. Summing these inequalities yields <math>g(a+kb)-g(a) > 4k</math>. As <math>k \rightarrow \infty</math> (but <math>b << \frac{1}{k}</math>, so <math>bk < \epsilon</math> is still arbitrarily small), we have <math>\lim_{k \rightarrow \infty} g(a+kb) - g(a) = g(a + \epsilon) - g(a) > \lim_{k \rightarrow \infty} 4k = \infty</math>. This implies that in the vicinity of any <math>a</math>, the function becomes vertical, which contradicts the definition of a function. Hence no very convex function exists. | Let <math>g(a) = \frac{f(a+b) - f(a)}{b}</math>, which is the slope of the secant between <math>(a,f(a))(a+b,f(a+b))</math>. Let <math>b</math> be arbitrarily small; then it follows that <math>g(a+b) - g(a) > 4</math>, <math>g(a+2b) - g(a+b) > 4,\, \cdots, g(a+kb) - g(a+ [k-1]b) > 4</math>. Summing these inequalities yields <math>g(a+kb)-g(a) > 4k</math>. As <math>k \rightarrow \infty</math> (but <math>b << \frac{1}{k}</math>, so <math>bk < \epsilon</math> is still arbitrarily small), we have <math>\lim_{k \rightarrow \infty} g(a+kb) - g(a) = g(a + \epsilon) - g(a) > \lim_{k \rightarrow \infty} 4k = \infty</math>. This implies that in the vicinity of any <math>a</math>, the function becomes vertical, which contradicts the definition of a function. Hence no very convex function exists. | ||
− | == See | + | == See Also == |
{{USAMO newbox|year=2000|before=First question|num-a=2}} | {{USAMO newbox|year=2000|before=First question|num-a=2}} | ||
[[Category:Olympiad Algebra Problems]] | [[Category:Olympiad Algebra Problems]] |
Revision as of 08:24, 16 September 2012
Problem
Call a real-valued function very convex if
holds for all real numbers and . Prove that no very convex function exists.
Solution
Let , and substitute . Then a function is very convex if , or rearranging,
Let , which is the slope of the secant between . Let be arbitrarily small; then it follows that , . Summing these inequalities yields . As (but , so is still arbitrarily small), we have . This implies that in the vicinity of any , the function becomes vertical, which contradicts the definition of a function. Hence no very convex function exists.
See Also
2000 USAMO (Problems • Resources) | ||
Preceded by First question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |