Difference between revisions of "2001 AIME I Problems/Problem 4"

m (Solution 2 (no trig))
(10 intermediate revisions by 5 users not shown)
Line 1: Line 1:
== Problem ==
+
==Problem==
In [[triangle]] <math>ABC</math>, angles <math>A</math> and <math>B</math> measure <math>60</math> degrees and <math>45</math> degrees, respectively. The [[angle bisector|bisector]] of angle <math>A</math> intersects <math>\overline{BC}</math> at <math>T</math>, and <math>AT=24</math>. The area of triangle <math>ABC</math> can be written in the form <math>a+b\sqrt{c}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c</math>.
 
  
== Solution 1==
+
In triangle <math>ABC</math>, angles <math>A</math> and <math>B</math> measure <math>60</math> degrees and <math>45</math> degrees, respectively. The bisector of angle <math>A</math> intersects <math>\overline{BC}</math> at <math>T</math>, and <math>AT=24</math>. The area of triangle <math>ABC</math> can be written in the form <math>a+b\sqrt{c}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c</math>.
<center><asy> size(180);
 
pointpen = black; pathpen = black+linewidth(0.7);
 
pair A=(0,0),B=(12+12*3^.5,0),C=(12,12*3^.5),D=foot(C,A,B),T=IP(CR(A,24),B--C);
 
D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(D(MP("T",T,NE))--A); D(MP("D",D)--C,linetype("6 6") + linewidth(0.7));
 
MP("24",(A+3*T)/4,SE);
 
D(anglemark(C,B,A,65)); D(anglemark(B,A,C,65)); D(rightanglemark(C,D,B,50)); MP("30^{\circ}",A,(4,1)); MP("45^{\circ}",B,(-3,1));
 
</asy></center>
 
  
Let <math>D</math> be the foot of the [[altitude]] from <math>C</math> to <math>\overline{AB}</math>. By simple angle-chasing, we find that <math>\angle ATB = 105^{\circ}, \angle ATC = 75^{\circ} = \angle ACT</math>, and thus <math>AC = AT = 24</math>. Now <math>\triangle ADC</math> is a <math>30-60-90</math> [[right triangle]] and <math>BDC</math> is a <math>45-45-90</math> right triangle, so <math>AD = 12,\,CD = 12\sqrt{3},\,BD = 12\sqrt{3}</math>. The area of
+
==Solution==
  
<cmath>ABC = \frac{1}{2}bh = \frac{CD \cdot (AD + BD)}{2} = \frac{12\sqrt{3} \cdot \left(12\sqrt{3} + 12\right)}{2} = 216 + 72\sqrt{3},</cmath>
+
After chasing angles, <math>\angle ATC=75^{\circ}</math> and <math>\angle TCA=75^{\circ}</math>, meaning <math>\triangle TAC</math> is an isosceles triangle and <math>AC=24</math>.
  
and the answer is <math>a+b+c = 216 + 72 + 3 = \boxed{291}</math>.
+
Using law of sines on <math>\triangle ABC</math>, we can create the following equation:
  
==Solution 2==
+
<math>\frac{24}{\sin(\angle ABC)}</math> <math>=</math> <math>\frac{BC}{\sin(\angle BAC)}</math>
Since <math>\angle CAB</math> has a measure of <math>60^{\circ}</math>, and thus has sines and cosines that are easy to compute, we attempt to find <math>AC</math> and <math>AB</math>, and use the formula that
 
  
<math>[ABC] = \frac{1}{2} \cdot AC \cdot AB \cdot \sin \angle A</math>
+
<math>\angle ABC=45^{\circ}</math> and <math>\angle BAC=60^{\circ}</math>, so <math>BC = 12\sqrt{6}</math>.
  
By angle chasing, we find that <math>ACT</math> is a triangle with <math>\angle A = 30^{\circ}, \angle C = 75^{\circ}</math> and <math>\angle T = 75^{\circ}</math>.  Thus <math>AC = AT = 24</math>.
+
We can then use the Law of Sines area formula <math>\frac{1}{2} \cdot BC \cdot AC \cdot \sin(\angle BCA)</math> to find the area of the triangle.
  
Switching to the lower triangle <math>ATB</math>, <math>\angle A = 30^{\circ}, \angle T =  105^{\circ}</math>, and <math>\angle B = 45^{\circ}</math>, with <math>AT = 24</math>.
+
<math>\sin(75)</math> can be found through the sin addition formula.
  
Using the [[Law of Sines]] on <math>ATB</math>:
+
<math>\sin(75)</math> <math>=</math> <math>\frac{\sqrt{6} + \sqrt{2}}{4}</math>
  
<math>\frac{AT}{\sin 45^{\circ}} = \frac{AB}{\sin 105^{\circ}}</math>
+
Therefore, the area of the triangle is <math>\frac{\sqrt{6} + \sqrt{2}}{4}</math> <math>\cdot</math> <math>24</math> <math>\cdot</math> <math>12\sqrt{6}</math> <math>\cdot</math> <math>\frac{1}{2}</math>
  
<math>24 \cdot \sqrt{2} \cdot \sin 105^{\circ} = AB</math>
+
<math>72\sqrt{3} + 216</math>
  
<math>24 \cdot \sqrt{2} \cdot \sin (60^{\circ}+ 45^{\circ}) = AB</math>
+
<math>72 + 3 + 216 =</math> <math>\boxed{291}</math>
  
<math>24 \cdot \sqrt{2} \cdot (\sin 60^{\circ} \cos 45^{\circ} + \sin 45^{\circ} \cos 60^{\circ}) = AB</math>
+
==Solution 2 (no trig)==
 +
First, draw a good diagram.
  
<math>24 \cdot \sqrt{2} \cdot (\frac {\sqrt{3}}{2} + \frac{1}{2}) \cdot \frac{\sqrt{2}}{2} = AB</math>
+
We realize that <math>\angle C = 75^\circ</math>, and <math>\angle CAT = 30^\circ</math>.  Therefore, <math>\angle CTA = 75^\circ</math> as well, making <math>\triangle CAT</math> an isosceles triangle.  <math>AT</math> and <math>AC</math> are congruent, so <math>AC=24</math>. We now drop an altitude from <math>C</math>, and call the foot this altitude point <math>D</math>. 
 +
<center><asy>
 +
size(200);
 +
defaultpen(linewidth(0.4)+fontsize(8));
  
<math>AB = 12 \cdot (\sqrt{3} + 1)</math>
+
pair A,B,C,D,T,F;
 +
A = origin;
 +
T = scale(24)*dir(30);
 +
C = scale(24)*dir(60);
 +
B = extension(C,T,A,(1,0));
 +
F = foot(T,A,B);
 +
D = foot(C,A,B);
 +
draw(A--B--C--A--T, black+0.8);
 +
draw(C--D, dashed);
 +
label(rotate(degrees(T-A))*"$24$", A--T, N);
 +
label(rotate(degrees(C-A))*"$24$", A--C, 2*NW);
  
We now plug in <math>AC</math>, <math>AB</math> and <math>\sin \angle A</math> into the formula for the area:
+
label("$12\sqrt 3$", C--D, E);
 +
label("$12\sqrt 3$", D--B, S);
 +
label("$12$", A--D, S);
 +
pen p = fontsize(8)+red;
 +
MA("45^\circ", C,B,A,2);
 +
MA("30^\circ", B,A,T,2.5);
 +
MA("30^\circ", T,A,C,3.5);
  
<math>[ABC] = \frac{1}{2} \cdot AC \cdot AB \cdot \sin \angle A</math>
+
dot("$A$", A, SW);
 
+
dot("$B$", B, SE);
<math>[ABC] = \frac{1}{2} \cdot 24 \cdot 12 \cdot (\sqrt{3} + 1) \cdot \frac{\sqrt{3}}{2}</math>
+
dot("$C$", C, N);
 
+
dot("$T$", T, NE);
<math>[ABC] = 72\sqrt{3} \cdot (\sqrt{3} + 1)</math>
+
dot("$D$", D, S);
 +
</asy></center>
 +
By 30-60-90 triangles, <math>AD=12</math> and <math>CD=12\sqrt{3}</math>
  
<math>[ABC] = 216 + 72\sqrt{3}</math>
+
We also notice that <math>\triangle CDB</math> is an isosceles right triangle.  <math>CD</math> is congruent to <math>BD</math>, which makes <math>BD=12\sqrt{3}</math>.  The base <math>AB</math> is <math>12+12\sqrt{3}</math>, and the altitude <math>CD=12\sqrt{3}</math>.  We can easily find that the area of triangle <math>ABC</math> is <math>216+72\sqrt{3}</math>, so <math>a+b+c=\boxed{291}</math>.
  
Thus the answer is <math>216 + 72 + 3 = \boxed{291}</math>
+
-youyanli
  
== See also ==
+
==See also==
 
{{AIME box|year=2001|n=I|num-b=3|num-a=5}}
 
{{AIME box|year=2001|n=I|num-b=3|num-a=5}}
  
[[Category:Intermediate Geometry Problems]]
 
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 22:56, 24 June 2021

Problem

In triangle $ABC$, angles $A$ and $B$ measure $60$ degrees and $45$ degrees, respectively. The bisector of angle $A$ intersects $\overline{BC}$ at $T$, and $AT=24$. The area of triangle $ABC$ can be written in the form $a+b\sqrt{c}$, where $a$, $b$, and $c$ are positive integers, and $c$ is not divisible by the square of any prime. Find $a+b+c$.

Solution

After chasing angles, $\angle ATC=75^{\circ}$ and $\angle TCA=75^{\circ}$, meaning $\triangle TAC$ is an isosceles triangle and $AC=24$.

Using law of sines on $\triangle ABC$, we can create the following equation:

$\frac{24}{\sin(\angle ABC)}$ $=$ $\frac{BC}{\sin(\angle BAC)}$

$\angle ABC=45^{\circ}$ and $\angle BAC=60^{\circ}$, so $BC = 12\sqrt{6}$.

We can then use the Law of Sines area formula $\frac{1}{2} \cdot BC \cdot AC \cdot \sin(\angle BCA)$ to find the area of the triangle.

$\sin(75)$ can be found through the sin addition formula.

$\sin(75)$ $=$ $\frac{\sqrt{6} + \sqrt{2}}{4}$

Therefore, the area of the triangle is $\frac{\sqrt{6} + \sqrt{2}}{4}$ $\cdot$ $24$ $\cdot$ $12\sqrt{6}$ $\cdot$ $\frac{1}{2}$

$72\sqrt{3} + 216$

$72 + 3 + 216 =$ $\boxed{291}$

Solution 2 (no trig)

First, draw a good diagram.

We realize that $\angle C = 75^\circ$, and $\angle CAT = 30^\circ$. Therefore, $\angle CTA = 75^\circ$ as well, making $\triangle CAT$ an isosceles triangle. $AT$ and $AC$ are congruent, so $AC=24$. We now drop an altitude from $C$, and call the foot this altitude point $D$.

[asy] size(200); defaultpen(linewidth(0.4)+fontsize(8));  pair A,B,C,D,T,F; A = origin; T = scale(24)*dir(30); C = scale(24)*dir(60); B = extension(C,T,A,(1,0)); F = foot(T,A,B); D = foot(C,A,B); draw(A--B--C--A--T, black+0.8); draw(C--D, dashed); label(rotate(degrees(T-A))*"$24$", A--T, N); label(rotate(degrees(C-A))*"$24$", A--C, 2*NW);  label("$12\sqrt 3$", C--D, E); label("$12\sqrt 3$", D--B, S); label("$12$", A--D, S); pen p = fontsize(8)+red; MA("45^\circ", C,B,A,2); MA("30^\circ", B,A,T,2.5); MA("30^\circ", T,A,C,3.5);  dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, N); dot("$T$", T, NE); dot("$D$", D, S); [/asy]

By 30-60-90 triangles, $AD=12$ and $CD=12\sqrt{3}$.

We also notice that $\triangle CDB$ is an isosceles right triangle. $CD$ is congruent to $BD$, which makes $BD=12\sqrt{3}$. The base $AB$ is $12+12\sqrt{3}$, and the altitude $CD=12\sqrt{3}$. We can easily find that the area of triangle $ABC$ is $216+72\sqrt{3}$, so $a+b+c=\boxed{291}$.

-youyanli

See also

2001 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png