# 2001 AIME I Problems/Problem 5

## Problem

An equilateral triangle is inscribed in the ellipse whose equation is $x^2+4y^2=4$. One vertex of the triangle is $(0,1)$, one altitude is contained in the y-axis, and the length of each side is $\sqrt{\frac mn}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

## Solution

$[asy] pointpen = black; pathpen = black + linewidth(0.7); path e = xscale(2)*unitcircle; real x = -8/13*3^.5; D((-3,0)--(3,0)); D((0,-2)--(0,2)); /* axes */ D(e); D(D((0,1))--(x,x*3^.5+1)--(-x,x*3^.5+1)--cycle); [/asy]$

### Solution 1

Denote the vertices of the triangle $A,B,$ and $C,$ where $B$ is in quadrant 4 and $C$ is in quadrant $3.$

Note that the slope of $\overline{AC}$ is $\tan 60^\circ = \sqrt {3}.$ Hence, the equation of the line containing $\overline{AC}$ is $$y = x\sqrt {3} + 1.$$ This will intersect the ellipse when $\begin{eqnarray*}4 = x^{2} + 4y^{2} & = & x^{2} + 4(x\sqrt {3} + 1)^{2} \\ & = & x^{2} + 4(3x^{2} + 2x\sqrt {3} + 1) \implies x = \frac { - 8\sqrt {3}}{13}. \end{eqnarray*}$ Since the triangle is symmetric with respect to the y-axis, the coordinates of $B$ and $C$ are now $\left(\frac {8\sqrt {3}}{13},y_{0}\right)$ and $\left(\frac { - 8\sqrt {3}}{13},y_{0}\right),$ respectively, for some value of $y_{0}.$

Since we're going to use the distance formula, the value of $y_{0}$ is irrelevant. Our answer is $$BC = \sqrt {2\left(\frac {8\sqrt {3}}{13}\right)^{2}} = \sqrt {\frac {768}{169}}\implies m + n = \boxed{937}.$$

### Solution 2

Solving for $y$ in terms of $x$ gives $y=\sqrt{4-x^2}/2$, so the two other points of the triangle are $(x,\sqrt{4-x^2}/2)$ and $(-x,\sqrt{4-x^2}/2)$, which are a distance of $2x$ apart. Thus $2x$ equals the distance between $(x,\sqrt{4-x^2}/2)$ and $(0,1)$, so by the distance formula we have

$$2x=\sqrt{x^2+(1-\sqrt{4-x^2}/2)^2}.$$

Squaring both sides and simplifying through algebra yields $x^2=192/169$, so $2x=\sqrt{768/169}$ and the answer is $\boxed{937}$.