Difference between revisions of "2003 AIME I Problems"

Line 1: Line 1:
 
== Problem 1 ==
 
== Problem 1 ==
 +
Given that
 +
 +
<center><math> \frac{((3!)!)!}{3!} = k \cdot n!, </math></center>
 +
 +
where <math> k </math> and <math> n </math> are positive integers and <math> n </math> is as large as possible, find <math> k + n. </math>
  
 
[[2003 AIME I Problems/Problem 1|Solution]]
 
[[2003 AIME I Problems/Problem 1|Solution]]
  
 
== Problem 2 ==
 
== Problem 2 ==
 +
One hundred concentric circles with radii <math> 1, 2, 3, \dots, 100 </math> are drawn in a plane. The interior of the circle of radius 1 is colored red, and each region bounded by consecutive circles is colored either red or green, with no two adjacent regions the same color. The ratio of the total area of the green regions to the area of the circle of radius 100 can be expressed as <math> m/n, </math> where <math> m </math> and <math> n </math> are relatively prime positive integers. Find <math> m + n. </math>
  
 
[[2003 AIME I Problems/Problem 2|Solution]]
 
[[2003 AIME I Problems/Problem 2|Solution]]
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
Let the set <math> \mathcal{S} = \{8, 5, 1, 13, 34, 3, 21, 2\}. </math> Susan makes a list as follows: for each two-element subset of <math> \mathcal{S}, </math> she writes on her list the greater of the set's two elements. Find the sum of the numbers on the list.
  
 
[[2003 AIME I Problems/Problem 3|Solution]]
 
[[2003 AIME I Problems/Problem 3|Solution]]
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
Given that <math> \log_{10} \sin x + \log_{10} \cos x = -1 </math> and that <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1), </math> find <math> n. </math>
  
 
[[2003 AIME I Problems/Problem 4|Solution]]
 
[[2003 AIME I Problems/Problem 4|Solution]]
  
 
== Problem 5 ==
 
== Problem 5 ==
 +
Consider the set of points that are inside or within one unit of a rectangular parallelepiped (box) that measures 3 by 4 by 5 units. Given that the volume of this set is <math> (m + n \pi)/p, </math> where <math> m, n, </math> and <math> p </math> are positive integers, and <math> n </math> and <math> p </math> are relatively prime, find <math> m + n + p. </math>
  
 
[[2003 AIME I Problems/Problem 5|Solution]]
 
[[2003 AIME I Problems/Problem 5|Solution]]
  
 
== Problem 6 ==
 
== Problem 6 ==
 +
The sum of the areas of all triangles whose vertices are also vertices of a 1 by 1 by 1 cube is <math> m + \sqrt{n} + \sqrt{p}, </math> where <math> m, n, </math> and <math> p </math> are integers. Find <math> m + n + p. </math>
  
 
[[2003 AIME I Problems/Problem 6|Solution]]
 
[[2003 AIME I Problems/Problem 6|Solution]]
  
 
== Problem 7 ==
 
== Problem 7 ==
 +
Point <math> B </math> is on <math> \overline{AC} </math> with <math> AB = 9 </math> and <math> BC = 21. </math> Point <math> D </math> is not on <math> \overline{AC} </math> so that <math> AD = CD, </math> and <math> AD </math> and <math> BD </math> are integers. Let <math> s </math> be the sum of all possible perimeters of <math> \triangle ACD. </math> Find <math> s. </math>
  
 
[[2003 AIME I Problems/Problem 7|Solution]]
 
[[2003 AIME I Problems/Problem 7|Solution]]
  
 
== Problem 8 ==
 
== Problem 8 ==
 +
In an increasing sequence of four positive integers, the first three terms form an arithmetic progression, the last three terms form a geometric progression, and the first and fourth terms differ by 30. Find the sum of the four terms.
  
 
[[2003 AIME I Problems/Problem 8|Solution]]
 
[[2003 AIME I Problems/Problem 8|Solution]]
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
An integer between 1000 and 9999, inclusive, is called balanced if the sum of its two leftmost digits equals the sum of its two rightmost digits. How many balanced integers are there?
  
 
[[2003 AIME I Problems/Problem 9|Solution]]
 
[[2003 AIME I Problems/Problem 9|Solution]]
  
 
== Problem 10 ==
 
== Problem 10 ==
 +
Triangle <math> ABC </math> is isosceles with <math> AC = BC </math> and <math> \angle ACB = 106^\circ. </math> Point <math> M </math> is in the interior of the triangle so that <math> \angle MAC = 7^\circ </math> and <math> \angle MCA = 23^\circ. </math> Find the number of degrees in <math> \angle CMB. </math>
  
 
[[2003 AIME I Problems/Problem 10|Solution]]
 
[[2003 AIME I Problems/Problem 10|Solution]]
  
 
== Problem 11 ==
 
== Problem 11 ==
 +
An angle <math> x </math> is chosen at random from the interval <math> 0^\circ < x < 90^\circ. </math> Let <math> p </math> be the probability that the numbers <math> \sin^2 x, \cos^2 x, </math> and <math> \sin x \cos x </math> are not the lengths of the sides of a triangle. Given that <math> p = d/n, </math> where <math> d </math> is the number of degrees in <math> \arctan m </math> and <math> m </math> and <math> n </math> are positive integers with <math> m + n < 1000, </math> find <math> m + n. </math>
  
 
[[2003 AIME I Problems/Problem 11|Solution]]
 
[[2003 AIME I Problems/Problem 11|Solution]]
  
 
== Problem 12 ==
 
== Problem 12 ==
 +
In convex quadrilateral <math> ABCD, \angle A \cong \angle C, AB = CD = 180, </math> and <math> AD \neq BC. </math> The perimeter of <math> ABCD </math> is 640. Find <math> \lfloor 1000 \cos A \rfloor. </math> (The notation <math> \lfloor x \rfloor </math> means the greatest integer that is less than or equal to <math> x. </math>)
  
 
[[2003 AIME I Problems/Problem 12|Solution]]
 
[[2003 AIME I Problems/Problem 12|Solution]]
Line 59: Line 75:
 
== Problem 15 ==
 
== Problem 15 ==
 
In <math> \triangle ABC, AB = 360, BC = 507, </math> and <math> CA = 780. </math> Let <math> M </math> be the midpoint of <math> \overline{CA}, </math> and let <math> D </math> be the point on <math> \overline{CA} </math> such that <math> \overline{BD} </math> bisects angle <math> ABC. </math> Let <math> F </math> be the point on <math> \overline{BC} </math> such that <math> \overline{DF} \perp \overline{BD}. </math> Suppose that <math> \overline{DF} </math> meets <math> \overline{BM} </math> at <math> E. </math> The ratio <math> DE: EF </math> can be written in the form <math> m/n, </math> where <math> m </math> and <math> n </math> are relatively prime positive integers. Find <math> m + n. </math>
 
In <math> \triangle ABC, AB = 360, BC = 507, </math> and <math> CA = 780. </math> Let <math> M </math> be the midpoint of <math> \overline{CA}, </math> and let <math> D </math> be the point on <math> \overline{CA} </math> such that <math> \overline{BD} </math> bisects angle <math> ABC. </math> Let <math> F </math> be the point on <math> \overline{BC} </math> such that <math> \overline{DF} \perp \overline{BD}. </math> Suppose that <math> \overline{DF} </math> meets <math> \overline{BM} </math> at <math> E. </math> The ratio <math> DE: EF </math> can be written in the form <math> m/n, </math> where <math> m </math> and <math> n </math> are relatively prime positive integers. Find <math> m + n. </math>
 +
  
 
[[2003 AIME I Problems/Problem 15|Solution]]
 
[[2003 AIME I Problems/Problem 15|Solution]]

Revision as of 17:48, 15 July 2006

Problem 1

Given that

$\frac{((3!)!)!}{3!} = k \cdot n!,$

where $k$ and $n$ are positive integers and $n$ is as large as possible, find $k + n.$

Solution

Problem 2

One hundred concentric circles with radii $1, 2, 3, \dots, 100$ are drawn in a plane. The interior of the circle of radius 1 is colored red, and each region bounded by consecutive circles is colored either red or green, with no two adjacent regions the same color. The ratio of the total area of the green regions to the area of the circle of radius 100 can be expressed as $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

Solution

Problem 3

Let the set $\mathcal{S} = \{8, 5, 1, 13, 34, 3, 21, 2\}.$ Susan makes a list as follows: for each two-element subset of $\mathcal{S},$ she writes on her list the greater of the set's two elements. Find the sum of the numbers on the list.

Solution

Problem 4

Given that $\log_{10} \sin x + \log_{10} \cos x = -1$ and that $\log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1),$ find $n.$

Solution

Problem 5

Consider the set of points that are inside or within one unit of a rectangular parallelepiped (box) that measures 3 by 4 by 5 units. Given that the volume of this set is $(m + n \pi)/p,$ where $m, n,$ and $p$ are positive integers, and $n$ and $p$ are relatively prime, find $m + n + p.$

Solution

Problem 6

The sum of the areas of all triangles whose vertices are also vertices of a 1 by 1 by 1 cube is $m + \sqrt{n} + \sqrt{p},$ where $m, n,$ and $p$ are integers. Find $m + n + p.$

Solution

Problem 7

Point $B$ is on $\overline{AC}$ with $AB = 9$ and $BC = 21.$ Point $D$ is not on $\overline{AC}$ so that $AD = CD,$ and $AD$ and $BD$ are integers. Let $s$ be the sum of all possible perimeters of $\triangle ACD.$ Find $s.$

Solution

Problem 8

In an increasing sequence of four positive integers, the first three terms form an arithmetic progression, the last three terms form a geometric progression, and the first and fourth terms differ by 30. Find the sum of the four terms.

Solution

Problem 9

An integer between 1000 and 9999, inclusive, is called balanced if the sum of its two leftmost digits equals the sum of its two rightmost digits. How many balanced integers are there?

Solution

Problem 10

Triangle $ABC$ is isosceles with $AC = BC$ and $\angle ACB = 106^\circ.$ Point $M$ is in the interior of the triangle so that $\angle MAC = 7^\circ$ and $\angle MCA = 23^\circ.$ Find the number of degrees in $\angle CMB.$

Solution

Problem 11

An angle $x$ is chosen at random from the interval $0^\circ < x < 90^\circ.$ Let $p$ be the probability that the numbers $\sin^2 x, \cos^2 x,$ and $\sin x \cos x$ are not the lengths of the sides of a triangle. Given that $p = d/n,$ where $d$ is the number of degrees in $\arctan m$ and $m$ and $n$ are positive integers with $m + n < 1000,$ find $m + n.$

Solution

Problem 12

In convex quadrilateral $ABCD, \angle A \cong \angle C, AB = CD = 180,$ and $AD \neq BC.$ The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor.$ (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x.$)

Solution

Problem 13

Let $N$ be the number of positive integers that are less than or equal to 2003 and whose base-2 representation has more 1's than 0's. Find the remainder when $N$ is divided by 1000.

Solution

Problem 14

The decimal representation of $m/n,$ where $m$ and $n$ are relatively prime positive integers and $m < n,$ contains the digits 2, 5, and 1 consecutively, and in that order. Find the smallest value of $n$ for which this is possible.

Solution

Problem 15

In $\triangle ABC, AB = 360, BC = 507,$ and $CA = 780.$ Let $M$ be the midpoint of $\overline{CA},$ and let $D$ be the point on $\overline{CA}$ such that $\overline{BD}$ bisects angle $ABC.$ Let $F$ be the point on $\overline{BC}$ such that $\overline{DF} \perp \overline{BD}.$ Suppose that $\overline{DF}$ meets $\overline{BM}$ at $E.$ The ratio $DE: EF$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$


Solution

See also