2003 AIME I Problems/Problem 4

Revision as of 16:48, 8 March 2007 by Azjps (talk | contribs) (prosify, box)

Problem

Given that $\log_{10} \sin x + \log_{10} \cos x = -1$ and that $\log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1),$ find $n.$

Solution

The first equation, $\displaystyle \log_{10} \sin x + \log_{10} \cos x = -1$, can be combined under the properties of logarithms to $\displaystyle \log_{10}(\sin x \cos x) = -1$. Therefore, $\sin x \cos x = \frac{1}{10}$.

Now, manipulate the second equation, $\log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1)$.

$\log_{10} (\sin x + \cos x) = \frac{1}{2}(\log_{10} n - \log_{10} 10)$
$\log_{10} (\sin x + \cos x) = \frac{1}{2}(\log_{10} \frac{n}{10})$
$\log_{10} (\sin x + \cos x) = \left(\log_{10} \sqrt{\frac{n}{10}}\right)$
$\sin x + \cos x = \sqrt{\frac{n}{10}}$
$(\sin x + \cos x)^{2} = \left(\sqrt{\frac{n}{10}}\right)^2$
$\sin^2 x + \cos^2 x +2 \sin x \cos x= \frac{n}{10}$

$\displaystyle \sin ^2 x + \cos ^2 x = 1$, and we can substitute the value for $\displaystyle \sin x \cos x$ from above.

$1 + 2(\frac{1}{10}) = \frac{n}{10}$
$\frac{12}{10} = \frac{n}{10}$

Thus, the solution is $n = 012$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions