# 2003 AMC 12B Problems/Problem 25

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Three points are chosen randomly and independently on a circle. What is the probability that all three pairwise distance between the points are less than the radius of the circle? $\mathrm{(A)}\ \dfrac{1}{36} \qquad\mathrm{(B)}\ \dfrac{1}{24} \qquad\mathrm{(C)}\ \dfrac{1}{18} \qquad\mathrm{(D)}\ \dfrac{1}{12} \qquad\mathrm{(E)}\ \dfrac{1}{9}$

## Solution 1

The first point anywhere on the circle, because it doesn't matter where it is chosen.

The next point must lie within $60$ degrees of arc on either side, a total of $120$ degrees possible, giving a total $\frac{1}{3}$ chance. The last point must lie within $60$ degrees of both.

The minimum area of freedom we have to place the third point is a $60$ degrees arc(if the first two are $60$ degrees apart), with a $\frac{1}{6}$ probability. The maximum amount of freedom we have to place the third point is a $120$ degree arc(if the first two are the same point), with a $\frac{1}{3}$ probability.

As the second point moves farther away from the first point, up to a maximum of $60$ degrees, the probability changes linearly (every degree it moves, adds one degree to where the third could be).

Therefore, we can average probabilities at each end to find $\frac{1}{4}$ to find the average probability we can place the third point based on a varying second point.

Therefore the total probability is $1\times\frac{1}{3}\times\frac{1}{4}=\frac{1}{12}$ or $\boxed{\text{(D)}}$

## Solution 2

We will use geometric probability.

The first point can be anywhere. Each point must be $\frac{\pi}{3}$ or less away from each other.

Define $x$ be the amount of radians away the second point is from the first. We limit $x$ to be in the interval $[-\pi, \pi]$. Define $y$ be the amount of radians away the third point is from the first. We limit $y$ to be in the interval $[-\pi, \pi]$. Now, we can deduct that: $$|x| \le \frac{\pi}{3},$$ $$|y| \le \frac{\pi}{3},$$ and $$|x-y| \le \frac{\pi}{3}.$$ We now begin plotting these on the coordinate grid.

First note that the area of the points that $x$ and $y$ can be (ignoring the conditions) is $(2\pi)^2$ (remember what we restricted $x$ and $y$ to).

Now, we can graph the equations we deduced on the coordinate grid. That should look like this: $[asy] fill((40, 0)--(40, 40)--(0, 40)--(-40, 0)--(-40, -40)--(0, -40)--cycle, green); draw((-50, 0)--(50, 0)); draw((0, -50)--(0, 50)); draw((-50, -10)--(10, 50),red); draw((-10, -50)--(50, 10),red); draw((-40, 40)--(40, 40),red); draw((-40, -40)--(40, -40),red); draw((40, 40)--(40, -40),red); draw((-40, 40)--(-40, -40),red); label("\frac{\pi}{3}", (40, 0), SE); label("\frac{\pi}{3}", (-40, 0), SW); label("\frac{\pi}{3}", (0, 40), NE); label("\frac{\pi}{3}", (0, -40), NW); [/asy]$ The area of the shaded region can be calculated in many ways. Eventually, you will find that the area is $\frac{\pi^2}{3}$.

Thus, the probability is $\frac{\frac{\pi^2}{3}}{(2\pi)^2} = \frac{1}{12}$, or $\boxed{\text{(D)}}$.

~superagh

## See Also

 2003 AMC 12B (Problems • Answer Key • Resources) Preceded byProblem 24 Followed byLast Problem 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS