Difference between revisions of "2005 AIME II Problems/Problem 5"

(Solution 2)
(Solution 1)
 
Line 2: Line 2:
 
Determine the number of [[ordered pair]]s <math> (a,b) </math> of [[integer]]s such that <math> \log_a b + 6\log_b a=5, 2 \leq a \leq 2005, </math> and <math> 2 \leq b \leq 2005. </math>
 
Determine the number of [[ordered pair]]s <math> (a,b) </math> of [[integer]]s such that <math> \log_a b + 6\log_b a=5, 2 \leq a \leq 2005, </math> and <math> 2 \leq b \leq 2005. </math>
  
== Solution I ==
+
== Solution 1 ==
 
The equation can be rewritten as <math> \frac{\log b}{\log a} + 6 \frac{\log a}{\log b} = \frac{(\log b)^2+6(\log a)^2}{\log a  \log b}=5 </math> Multiplying through by <math>\log a \log b </math> and factoring yields <math>(\log b - 3\log a)(\log b - 2\log a)=0 </math>. Therefore, <math>\log b=3\log a </math> or <math>\log b=2\log a </math>, so either <math> b=a^3 </math> or <math> b=a^2 </math>.  
 
The equation can be rewritten as <math> \frac{\log b}{\log a} + 6 \frac{\log a}{\log b} = \frac{(\log b)^2+6(\log a)^2}{\log a  \log b}=5 </math> Multiplying through by <math>\log a \log b </math> and factoring yields <math>(\log b - 3\log a)(\log b - 2\log a)=0 </math>. Therefore, <math>\log b=3\log a </math> or <math>\log b=2\log a </math>, so either <math> b=a^3 </math> or <math> b=a^2 </math>.  
 
*For the case <math> b=a^2 </math>, note that <math> 44^2=1936 </math> and <math> 45^2=2025 </math>. Thus, all values of <math>a</math> from <math>2</math> to <math>44</math> will work.  
 
*For the case <math> b=a^2 </math>, note that <math> 44^2=1936 </math> and <math> 45^2=2025 </math>. Thus, all values of <math>a</math> from <math>2</math> to <math>44</math> will work.  

Latest revision as of 13:27, 27 November 2019

Problem

Determine the number of ordered pairs $(a,b)$ of integers such that $\log_a b + 6\log_b a=5, 2 \leq a \leq 2005,$ and $2 \leq b \leq 2005.$

Solution 1

The equation can be rewritten as $\frac{\log b}{\log a} + 6 \frac{\log a}{\log b} = \frac{(\log b)^2+6(\log a)^2}{\log a  \log b}=5$ Multiplying through by $\log a \log b$ and factoring yields $(\log b - 3\log a)(\log b - 2\log a)=0$. Therefore, $\log b=3\log a$ or $\log b=2\log a$, so either $b=a^3$ or $b=a^2$.

  • For the case $b=a^2$, note that $44^2=1936$ and $45^2=2025$. Thus, all values of $a$ from $2$ to $44$ will work.
  • For the case $b=a^3$, note that $12^3=1728$ while $13^3=2197$. Therefore, for this case, all values of $a$ from $2$ to $12$ work.

There are $44-2+1=43$ possibilities for the square case and $12-2+1=11$ possibilities for the cube case. Thus, the answer is $43+11= \boxed{054}$.

Note that Inclusion-Exclusion does not need to be used, as the problem is asking for ordered pairs $(a,b)$, and not for the number of possible values of $b$. Were the problem to ask for the number of possible values of $b$, the values of $b^6$ under $2005$ would have to be subtracted, which would just be $2$ values: $2^6$ and $3^6$. However, the ordered pairs where b is to the sixth power are distinct, so they are not redundant. (For example, the pairs (4, 64) and (8, 64).)

Solution 2

Let $k=\log_a b$. Then our equation becomes $k+\frac{6}{k}=5$. Multiplying through by $k$ and solving the quadratic gives us $k=2$ or $k=3$. Hence $a^2=b$ or $a^3=b$.

For the first case $a^2=b$, $a$ can range from 2 to 44, a total of 43 values. For the second case $a^3=b$, $a$ can range from 2 to 12, a total of 11 values.


Thus the total number of possible values is $43+11=\boxed{54}$.

See also

2005 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS