Difference between revisions of "2005 AMC 10B Problems/Problem 25"

(Solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
A subset <math>B</math> of the set of integers from <math>1</math> to <math>100</math>, inclusive, has the property that no two elements of <math>B</math> sum to <math>125</math>. What is the maximum possible number of elements in <math>B</math>?
 +
 +
<math>\mathrm{(A)} 50 \qquad \mathrm{(B)} 51 \qquad \mathrm{(C)} 62 \qquad \mathrm{(D)} 65 \qquad \mathrm{(E)} 68 </math>
 +
 
== Solution ==
 
== Solution ==
 
+
The question asks for the maximum possible number of elements. The integers from <math>1</math> to <math>24</math> can be included because you cannot make <math>125</math> with integers from <math>1</math> to <math>24</math> without the other number being greater than <math>100</math>. The integers from <math>25</math> to <math>100</math> are left. They can be paired so the sum is <math>125</math>: <math>25+100</math>, <math>26+99</math>, <math>27+98</math>, <math>\ldots</math>, <math>62+63</math>. That is <math>38</math> pairs, and at most one number from each pair can be included in the set. The total is <math>24 + 38 = \boxed{\mathrm{(C)}\ 62}</math>.
The question asks for the maximum possible. The integers from 1~24 can be included because you cannot make 125 with integers from 1~24 without the other number being greater than 100. The integers 25~100 are left. They can be paired so the sum is 125. 25+100, 26+99, 27+98, ...... 62+63. That is 38 pairs, and at most one number from each pair can be included in the set. The total is 24 + 38 = 62 --> C.
 
  
 
== See Also ==
 
== See Also ==
*[[2005 AMC 10B Problems]]
+
{{AMC10 box|year=2005|ab=B|num-b=24|after=Last Problem}}

Revision as of 16:44, 8 July 2011

Problem

A subset $B$ of the set of integers from $1$ to $100$, inclusive, has the property that no two elements of $B$ sum to $125$. What is the maximum possible number of elements in $B$?

$\mathrm{(A)} 50 \qquad \mathrm{(B)} 51 \qquad \mathrm{(C)} 62 \qquad \mathrm{(D)} 65 \qquad \mathrm{(E)} 68$

Solution

The question asks for the maximum possible number of elements. The integers from $1$ to $24$ can be included because you cannot make $125$ with integers from $1$ to $24$ without the other number being greater than $100$. The integers from $25$ to $100$ are left. They can be paired so the sum is $125$: $25+100$, $26+99$, $27+98$, $\ldots$, $62+63$. That is $38$ pairs, and at most one number from each pair can be included in the set. The total is $24 + 38 = \boxed{\mathrm{(C)}\ 62}$.

See Also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
Invalid username
Login to AoPS