# 2005 AMC 10B Problems/Problem 25

## Problem

A subset $B$ of the set of integers from $1$ to $100$, inclusive, has the property that no two elements of $B$ sum to $125$. What is the maximum possible number of elements in $B$?

$\mathrm{(A)} 50 \qquad \mathrm{(B)} 51 \qquad \mathrm{(C)} 62 \qquad \mathrm{(D)} 65 \qquad \mathrm{(E)} 68$

## Solution

[b]Solution 1[/b] The question asks for the maximum possible number of elements. The integers from $1$ to $24$ can be included because you cannot make $125$ with integers from $1$ to $24$ without the other number being greater than $100$. The integers from $25$ to $100$ are left. They can be paired so the sum is $125$: $25+100$, $26+99$, $27+98$, $\ldots$, $62+63$. That is $38$ pairs, and at most one number from each pair can be included in the set. The total is $24 + 38 = \boxed{\mathrm{(C)}\ 62}$. Also, it is possible to see that since the numbers $1$ to $24$ are in the set there are only the numbers $25$ to $100$ to consider. As $62+63$ gives $125$, the numbers $25$ to $62$ can be put in subset $B$ without having two numbers add up to $125$. In this way, subset $B$ will have the numbers $1$ to $62$, and so $\boxed{\mathrm{(C)}\ 62}$.

[b]Solution 2[/b] "Cut" 125 into half. The maximum integer value in the smaller half is 62. Thus the answer is $\boxed{\mathrm{(C)}\62}$ (Error compiling LaTeX. ! Undefined control sequence.).