Difference between revisions of "2005 AMC 12B Problems/Problem 17"

(Solution)
Line 18: Line 18:
  
 
<cmath>\log_{10}2^{a}+\log_{10}3^{b}+\log_{10}5^{c}+\log_{10}7^{d}=2005</cmath>
 
<cmath>\log_{10}2^{a}+\log_{10}3^{b}+\log_{10}5^{c}+\log_{10}7^{d}=2005</cmath>
<cmath>\Rightarrow \log_{10}{2^{a}\cdot 3^{b}\cdot 5^{c}\cdot 7^{d}}=2005</cmath>
+
<cmath>\rightarrow \log_{10}{2^{a}\cdot 3^{b}\cdot 5^{c}\cdot 7^{d}}=2005</cmath>
<cmath>\Rightarrow 2^{a}\cdot 3^{b}\cdot 5^{c}\cdot 7^{d} = 10^{2005}</cmath>
+
<cmath>\rightarrow 2^{a}\cdot 3^{b}\cdot 5^{c}\cdot 7^{d} = 10^{2005}</cmath>
  
 
As <math>a,b,c,d</math> must all be rational, and there are no powers of <math>3</math> or <math>7</math> in <math>10^{2005}</math>, <math>b=d=0</math>. Then <math>2^{a}\cdot 5^{c}=2^{2005}\cdot 5^{2005} \Rightarrow a=c=2005</math>.
 
As <math>a,b,c,d</math> must all be rational, and there are no powers of <math>3</math> or <math>7</math> in <math>10^{2005}</math>, <math>b=d=0</math>. Then <math>2^{a}\cdot 5^{c}=2^{2005}\cdot 5^{2005} \Rightarrow a=c=2005</math>.

Revision as of 21:17, 21 December 2020

Problem

How many distinct four-tuples $(a,b,c,d)$ of rational numbers are there with

\[a\cdot\log_{10}2+b\cdot\log_{10}3+c\cdot\log_{10}5+d\cdot\log_{10}7=2005?\]

$\mathrm{(A)}\ 0      \qquad \mathrm{(B)}\ 1      \qquad \mathrm{(C)}\ 17     \qquad \mathrm{(D)}\ 2004   \qquad \mathrm{(E)}\ \text{infinitely many}$

Solution

Using the laws of logarithms, the given equation becomes

\[\log_{10}2^{a}+\log_{10}3^{b}+\log_{10}5^{c}+\log_{10}7^{d}=2005\] \[\rightarrow \log_{10}{2^{a}\cdot 3^{b}\cdot 5^{c}\cdot 7^{d}}=2005\] \[\rightarrow 2^{a}\cdot 3^{b}\cdot 5^{c}\cdot 7^{d} = 10^{2005}\]

As $a,b,c,d$ must all be rational, and there are no powers of $3$ or $7$ in $10^{2005}$, $b=d=0$. Then $2^{a}\cdot 5^{c}=2^{2005}\cdot 5^{2005} \Rightarrow a=c=2005$.

Only the four-tuple $(2005,0,2005,0)$ satisfies the equation, so the answer is $\boxed{1} \Rightarrow \mathrm{(B)}$.

See also

2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png