# Difference between revisions of "2006 AMC 12A Problems/Problem 19"

## Problem

Circles with centers $(2,4)$ and $(14,9)$ have radii $4$ and $9$, respectively. The equation of a common external tangent to the circles can be written in the form $y=mx+b$ with $m>0$. What is $b$?  $\mathrm{(A) \ } \frac{908}{119}\qquad \mathrm{(B) \ } \frac{909}{119}\qquad \mathrm{(C) \ } \frac{130}{17}\qquad \mathrm{(D) \ } \frac{911}{119}\qquad \mathrm{(E) \ } \frac{912}{119}$

## Solution

Let $L_1$ be the line that goes through $(2,4)$ and $(14,9)$, and let $L_2$ be the line $y=mx+b$. If we let $\theta$ be the measure of the acute angle formed by $L_1$ and the x-axis, then $\tan\theta=\frac{5}{12}$. $L_1$ clearly bisects the angle formed by $L_2$ and the x-axis, so $m=\tan{2\theta}=\frac{2\tan\theta}{1-\tan^2{\theta}}=\frac{120}{119}$. We also know that $L_1$ and $L_2$ intersect at a point on the x-axis. The equation of $L_1$ is $y=\frac{5}{12}x+\frac{19}{6}$, so the coordinate of this point is $\left(-\frac{38}{5},0\right)$. Hence the equation of $L_2$ is $y=\frac{120}{119}x+\frac{912}{119}$, so $b=\frac{912}{119}$, and our answer choice is $\boxed{\mathrm{E}}$.

## See also

 2006 AMC 12A (Problems • Answer Key • Resources) Preceded byProblem 18 Followed byProblem 20 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS