Difference between revisions of "2006 iTest Problems/Problem 9"

(Solution to Problem 9 -- Sines and Cosines)
 
m (Solution)
 
(One intermediate revision by one other user not shown)
Line 10: Line 10:
 
Since <math>x</math> is in the third quadrant, <math>\cos(x)</math> is negative, so <math>\cos(x) = -\sqrt{1 - \tfrac{25}{169}} = -\tfrac{12}{13}</math>.  Using the half-angle identity (or the double angle cosine identity),
 
Since <math>x</math> is in the third quadrant, <math>\cos(x)</math> is negative, so <math>\cos(x) = -\sqrt{1 - \tfrac{25}{169}} = -\tfrac{12}{13}</math>.  Using the half-angle identity (or the double angle cosine identity),
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
|\cos(\frac{x}{2}) &= |\sqrt{\frac{\cos(x) + 1}{2}}| \\
+
|\cos(\frac{x}{2})| &= |\sqrt{\frac{\cos(x) + 1}{2}}| \\
 
&= \sqrt{\frac12 \cdot \frac{1}{13}} \\
 
&= \sqrt{\frac12 \cdot \frac{1}{13}} \\
 
&= \sqrt{\frac1{26}} \\
 
&= \sqrt{\frac1{26}} \\
Line 18: Line 18:
  
 
==See Also==
 
==See Also==
{{iTest box|year=2006|before=num-b=8|num-a=10|ver=[[2006 iTest Problems/Problem U1|U1]] '''•''' [[2006 iTest Problems/Problem U2|U2]] '''•''' [[2006 iTest Problems/Problem U3|U3]] '''•''' [[2006 iTest Problems/Problem U4|U4]] '''•''' [[2006 iTest Problems/Problem U5|U5]] '''•''' [[2006 iTest Problems/Problem U6|U6]] '''•''' [[2006 iTest Problems/Problem U7|U7]] '''•''' [[2006 iTest Problems/Problem U8|U8]] '''•''' [[2006 iTest Problems/Problem U9|U9]] '''•''' [[2006 iTest Problems/Problem U10|U10]]}}
+
{{iTest box|year=2006|num-b=8|num-a=10|ver=[[2006 iTest Problems/Problem U1|U1]] '''•''' [[2006 iTest Problems/Problem U2|U2]] '''•''' [[2006 iTest Problems/Problem U3|U3]] '''•''' [[2006 iTest Problems/Problem U4|U4]] '''•''' [[2006 iTest Problems/Problem U5|U5]] '''•''' [[2006 iTest Problems/Problem U6|U6]] '''•''' [[2006 iTest Problems/Problem U7|U7]] '''•''' [[2006 iTest Problems/Problem U8|U8]] '''•''' [[2006 iTest Problems/Problem U9|U9]] '''•''' [[2006 iTest Problems/Problem U10|U10]]}}
  
 
[[Category:Introductory Trigonometry Problems]]
 
[[Category:Introductory Trigonometry Problems]]

Latest revision as of 12:33, 16 February 2021

Problem

If $\sin(x)  =  -\frac{5}{13}$ and $x$ is in the third quadrant, what is the absolute value of $\cos(\frac{x}{2})$?

$\mathrm{(A)}\,\frac{\sqrt{3}}{3}\quad\mathrm{(B)}\,\frac{2\sqrt{3}}{3}\quad\mathrm{(C)}\,\frac{6}{13}\quad\mathrm{(D)}\,\frac{5}{13}\quad\mathrm{(E)}\,-\frac{5}{13} \\ \quad\mathrm{(F)}\,\frac{\sqrt{26}}{26}\quad\mathrm{(G)}\,-\frac{\sqrt{26}}{26}\quad\mathrm{(H)}\,\frac{\sqrt{2}}{2}\quad\mathrm{(I)}\,\text{none of the above}$

Solution

Since $x$ is in the third quadrant, $\cos(x)$ is negative, so $\cos(x) = -\sqrt{1 - \tfrac{25}{169}} = -\tfrac{12}{13}$. Using the half-angle identity (or the double angle cosine identity), \begin{align*} |\cos(\frac{x}{2})| &= |\sqrt{\frac{\cos(x) + 1}{2}}| \\ &= \sqrt{\frac12 \cdot \frac{1}{13}} \\ &= \sqrt{\frac1{26}} \\ &= \frac{\sqrt{26}}{26} \end{align*} The answer is $\boxed{\textbf{(F)}}$.

See Also

2006 iTest (Problems)
Preceded by:
Problem 8
Followed by:
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
Invalid username
Login to AoPS