# 2008 USAMO Problems/Problem 2

## Problem

(Zuming Feng) Let $ABC$ be an acute, scalene triangle, and let $M$, $N$, and $P$ be the midpoints of $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$, respectively. Let the perpendicular bisectors of $\overline{AB}$ and $\overline{AC}$ intersect ray $AM$ in points $D$ and $E$ respectively, and let lines $BD$ and $CE$ intersect in point $F$, inside of triangle $ABC$. Prove that points $A$, $N$, $F$, and $P$ all lie on one circle.

## Solution

### Solution 1 (synthetic)

$[asy] /* setup and variables */ size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(1,4); /* A.x > C.x/2 */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(B--D(MP("D",D,NE,s))--MP("P",P,(-1,0),s)--D(MP("O",O,(0,1),s))); D(D(MP("E",E,SW,s))--MP("N",N,(1,0),s)); D(C--D(MP("F",F,NW,s))); D(B--O--C,linetype("4 4")+linewidth(0.7)); D(M--N,linetype("4 4")+linewidth(0.7)); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); D(anglemark(B,A,C)); MP("y",A,(0,-6));MP("z",A,(4,-6)); D(anglemark(B,F,C,4),linewidth(0.6));D(anglemark(B,O,C,4),linewidth(0.6)); picture p = new picture; draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); /* D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); */ [/asy]$

Without loss of generality $AB < AC$. The intersection of $NE$ and $PD$ is $O$, the circumcenter of $\triangle ABC$.

Let $\angle BAM = y$ and $\angle CAM = z$. Note $D$ lies on the perpendicular bisector of $AB$, so $AD = BD$. So $\angle FBC = \angle B - \angle ABD = B - y$. Similarly, $\angle FCE = C - z$, so $\angle BFC = 180 - (B + C) + (y + z) = 2A$. Notice that $\angle BOC$ intercepts the minor arc $BC$ in the circumcircle of $\triangle ABC$, which is double $\angle A$. Hence $\angle BFC = \angle BOC$, so $FOBC$ is cyclic.

Lemma 1: $\triangle FEO$ is directly similar to $\triangle NEM$ $$\angle OFE = \angle OFC = \angle OBC = \frac {1}{2}\cdot (180 - 2A) = 90 - A$$ since $F$, $E$, $C$ are collinear, $FOBC$ is cyclic, and $OB = OC$. Also $$\angle ENM = 90 - \angle MNC = 90 - A$$ because $NE\perp AC$, and $MNP$ is the medial triangle of $\triangle ABC$ so $AB \parallel MN$. Hence $\angle OFE = \angle ENM$.

Notice that $\angle AEN = 90 - z = \angle CEN$ since $NE\perp BC$. $\angle FED = \angle MEC = 2z$. Then $$\angle FEO = \angle FED + \angle AEN = \angle CEM + \angle CEN = \angle NEM$$ Hence $\angle FEO = \angle NEM$.

Hence $\triangle FEO$ is similar to $\triangle NEM$ by AA similarity. It is easy to see that they are oriented such that they are directly similar. End Lemma 1.

$[asy] /* setup and variables */ size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(1,4); /* A.x > C.x/2 */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(B--D(MP("D",D,NE,s))--MP("P",P,(-1,0),s)--D(MP("O",O,(1,0),s))); D(D(MP("E",E,SW,s))--MP("N",N,(1,0),s)); D(C--D(MP("F",F,NW,s))); D(B--O--C,linetype("4 4")+linewidth(0.7)); D(F--N); D(O--M); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); /* commented from above asy D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); D(anglemark(B,A,C)); MP("y",A,(0,-6));MP("z",A,(4,-6)); D(anglemark(B,F,C,4),linewidth(0.6));D(anglemark(B,O,C,4),linewidth(0.6)); picture p = new picture; draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); */ [/asy]$

By the similarity in Lemma 1, $FE: EO = NE: EM\implies FE: EN = OE: NM$. $\angle FEN = \angle OEM$ so $\triangle FEN\sim\triangle OEM$ by SAS similarity. Hence $$\angle EMO = \angle ENF = \angle ONF$$ Using essentially the same angle chasing, we can show that $\triangle PDM$ is directly similar to $\triangle FMO$. It follows that $\triangle PDF$ is directly similar to $MDO$. So $$\angle EMO = \angle DMO = \angle DPF = \angle OPF$$ Hence $\angle OPF = \angle ONF$, so $FONP$ is cyclic. In other words, $F$ lies on the circumcircle of $\triangle PON$. Note that $\angle ONA = \angle OPA = 90$, so $APON$ is cyclic. In other words, $A$ lies on the circumcircle of $\triangle PON$. $A$, $P$, $N$, $O$, and $F$ all lie on the circumcircle of $\triangle PON$. Hence $A$, $P$, $F$, and $N$ lie on a circle, as desired.

### Solution 2 (synthetic)

Hint: consider $CF$ intersection with $PM$; show that the resulting intersection lies on the desired circle. Template:Incomplete

### Solution 3 (synthetic)

This solution utilizes the phantom point method. Clearly, APON are cyclic because $\angle OPA = \angle ONA = 90$. Let the circumcircles of triangles $APN$ and $BOC$ intersect at $F'$ and $O$.

Lemma. If $A,B,C$ are points on circle $\omega$ with center $O$, and the tangents to $\omega$ at $B,C$ intersect at $Q$, then $AP$ is the symmedian from $A$ to $BC$.

This is fairly easy to prove (as H, O are isogonal conjugates, plus using SAS similarity), but the author lacks time to write it up fully, and will do so soon.

It is easy to see $Q$ (the intersection of ray $OM$ and the circumcircle of $\triangle BOC$) is colinear with $A$ and $F'$, and because line $OM$ is the diameter of that circle, $\angle QBO = \angle QCO = 90$, so $Q$ is the point $Q$ in the lemma; hence, we may apply the lemma. From here, it is simple angle-chasing to show that $F'$ satisfies the original construction for $F$, showing $F=F'$; we are done. Template:Incomplete

### Solution 4 (trigonometric)

By the Law of Sines, $\frac {\sin\angle BAM}{\sin\angle CAM} = \frac {\sin B}{\sin C} = \frac bc = \frac {b/AF}{c/AF} = \frac {\sin\angle AFC\cdot\sin\angle ABF}{\sin\angle ACF\cdot\sin\angle AFB}$. Since $\angle ABF = \angle ABD = \angle BAD = \angle BAM$ and similarly $\angle ACF = \angle CAM$, we cancel to get $\sin\angle AFC = \sin\angle AFB$. Obviously, $\angle AFB + \angle AFC > 180^\circ$ so $\angle AFC = \angle AFB$.

Then $\angle FAB + \angle ABF = 180^\circ - \angle AFB = 180^\circ - \angle AFC = \angle FAC + \angle ACF$ and $\angle ABF + \angle ACF = \angle A = \angle FAB + \angle FAC$. Subtracting these two equations, $\angle FAB - \angle FCA = \angle FCA - \angle FAB$ so $\angle BAF = \angle ACF$. Therefore, $\triangle ABF\sim\triangle CAF$ (by AA similarity), so a spiral similarity centered at $F$ takes $B$ to $A$ and $A$ to $C$. Therefore, it takes the midpoint of $\overline{BA}$ to the midpoint of $\overline{AC}$, or $P$ to $N$. So $\angle APF = \angle CNF = 180^\circ - \angle ANF$ and $APFN$ is cyclic.

### Solution 5 (isogonal conjugates)

$[asy] /* setup and variables */ size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(4,4); /* A.x > C.x/2 */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(C--D(MP("E",E,NW,s))--MP("N",N,(1,0),s)--D(MP("O",O,SW,s))); D(D(MP("D",D,SE,s))--MP("P",P,W,s)); D(B--D(MP("F",F,s))); D(O--A--F,linetype("4 4")+linewidth(0.7)); D(MP("O'",circumcenter(A,P,N),NW,s)); D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); picture p = new picture; draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); draw(p,circumcircle(A,B,C),linetype("1 4")+linewidth(0.7)); clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); [/asy]$

Construct $T$ on $AM$ such that $\angle BCT = \angle ACF$. Then $\angle BCT = \angle CAM$. Then $\triangle AMC\sim\triangle CMT$, so $\frac {AM}{CM} = \frac {CM}{TM}$, or $\frac {AM}{BM} = \frac {BM}{TM}$. Then $\triangle AMB\sim\triangle BMT$, so $\angle CBT = \angle BAM = \angle FBA$. Then we have

$\angle CBT = \angle ABF$ and $\angle BCT = \angle ACF$. So $T$ and $F$ are isogonally conjugate. Thus $\angle BAF = \angle CAM$. Then

$\angle AFB = 180 - \angle ABF - \angle BAF = 180 - \angle BAM - \angle CAM = 180 - \angle BAC$.

If $O$ is the circumcenter of $\triangle ABC$ then $\angle BFC = 2\angle BAC = \angle BOC$ so $BFOC$ is cyclic. Then $\angle BFO = 180 - \angle BOC = 180 - (90 - \angle BAC) = 90 + \angle BAC$.

Then $\angle AFO = 360 - \angle AFB - \angle BFO = 360 - (180 - \angle BAC) - (90 + \angle BAC) = 90$. Then $\triangle AFO$ is a right triangle.

Now by the homothety centered at $A$ with ratio $\frac {1}{2}$, $B$ is taken to $P$ and $C$ is taken to $N$. Thus $O$ is taken to the circumcenter of $\triangle APN$ and is the midpoint of $AO$, which is also the circumcenter of $\triangle AFO$, so $A,P,N,F,O$ all lie on a circle.

### Solution 6 (symmedians)

Median $AM$ of a triangle $ABC$ implies $\frac {\sin{BAM}}{\sin{CAM}} = \frac {\sin{B}}{\sin{C}}$. Trig ceva for $F$ shows that $AF$ is a symmedian. Then $FP$ is a median, use the lemma again to show that $AFP = C$, and similarly $AFN = B$, so you're done. Template:Incomplete

### Solution 7 (inversion)

An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.

$[asy] size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(4,4); /* A.x > C.x/2 */ real r = 1.2; /* inversion radius */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(C--D(MP("E",E,NW,s))--MP("N",N,(1,0),s)--D(MP("O",O,SW,s))); D(D(MP("D",D,SE,s))--MP("P",P,W,s)); D(B--D(MP("F",F,s))); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); D(CR(A,r)); pair Pa = A + (P-A)/(r*r); D(MP("P'",Pa,NW,s)); [/asy]$

We consider an inversion by an arbitrary radius about $A$. We want to show that $P', F',$ and $N'$ are collinear. Notice that $D', A,$ and $P'$ lie on a circle with center $B'$, and similarly for the other side. We also have that $B', D', F', A$ form a cyclic quadrilateral, and similarly for the other side. By angle chasing, we can prove that $A B' F' C'$ is a parallelogram, indicating that $F'$ is the midpoint of $P'N'$. Template:Incomplete

### Solution 7 (analytical)

We let $A$ be at the origin, $B$ be at the point $(a,0)$, and $C$ be at the point $(b,c):\ b. Then the equation of the perpendicular bisector of $\overline{AB}$ is $x = a/2$, and Template:Incomplete