# Difference between revisions of "2009 AMC 10A Problems/Problem 1"

## Problem

One elephant, can hold $12$ ounces of human blood, what is the minimum number of elephants needed to provide a gallon ( $128$ ounces) of blood? $\textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 9\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 11$\qquad \textbf{(F)}\ Option 6\$

## Solution 1 $10$ cans would hold $120$ ounces, but $128>120$, so $11$ cans are required. Thus, the answer is $\mathrm{\boxed{(E)}}$.

## Solution 2

We want to find $\left\lceil\frac{128}{12}\right\rceil$ because there are a whole number of cans. $\frac{128}{12} = 10R8\longrightarrow 11\longrightarrow \fbox{(E)}.$

 2009 AMC 10A (Problems • Answer Key • Resources) Preceded byFirst Question Followed byProblem 2 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 