Difference between revisions of "2009 AMC 10A Problems/Problem 16"
(→Solution 2) |
(→Solution 3) |
||
Line 57: | Line 57: | ||
== Solution 3 == | == Solution 3 == | ||
− | Let <cmath>\begin{cases} |a-b| = 2, \\ |b-c| = 3, \\ |c-d| = 4, \\ |d-a| = X. \\ \end{cases}</cmath> Note that we have <cmath>\begin{cases} a-b = \pm 2, \\ b-c = \pm 3, \\ c-d = \pm 4 \\ d-a = \pm X, \\ \end{cases} \ \ \implies | + | Let <cmath>\begin{cases} |a-b| = 2, \\ |b-c| = 3, \\ |c-d| = 4, \\ |d-a| = X. \\ \end{cases}</cmath> Note that we have <cmath>\begin{cases} a-b = \pm 2, \\ b-c = \pm 3, \\ c-d = \pm 4 \\ d-a = \pm X, \\ \end{cases}, \ \ \implies</cmath> <cmath>\pm X \pm 2 \pm 3 \pm 4 = 0, \ \ \implies X \pm 2 \pm 3 \pm 4 = 0.</cmath> |
Note that <math>X = |a-d|</math> must be positive however, the only arrangements of <math>+</math> and <math>-</math> signs on the RHS which make <math>X</math> positive are <cmath>(4, 3, 2) \ \ \implies \ \ X = 9</cmath> <cmath>(4, 3, -2) \ \ \implies \ \ X = 5</cmath> <cmath>(4, -3, 2) \ \ \implies \ \ X = 3</cmath> <cmath>(-4, 3, 2) \ \ \implies \ \ X = 1.</cmath> (There are no cases with <math>2</math> or more negative as <math>4-3-2<0.</math>) | Note that <math>X = |a-d|</math> must be positive however, the only arrangements of <math>+</math> and <math>-</math> signs on the RHS which make <math>X</math> positive are <cmath>(4, 3, 2) \ \ \implies \ \ X = 9</cmath> <cmath>(4, 3, -2) \ \ \implies \ \ X = 5</cmath> <cmath>(4, -3, 2) \ \ \implies \ \ X = 3</cmath> <cmath>(-4, 3, 2) \ \ \implies \ \ X = 1.</cmath> (There are no cases with <math>2</math> or more negative as <math>4-3-2<0.</math>) |
Revision as of 01:40, 19 January 2021
Problem
Let , , , and be real numbers with , , and . What is the sum of all possible values of ?
Solution 1
From we get that
Similarly, and .
Substitution gives . This gives . There are possibilities for the value of :
,
,
,
,
,
,
,
Therefore, the only possible values of are 9, 5, 3, and 1. Their sum is .
Solution 2
If we add the same constant to all of , , , and , we will not change any of the differences. Hence we can assume that .
From we get that , hence .
If we multiply all four numbers by , we will not change any of the differences. (This is due to the fact that we are calculating |d| at the end ~Williamgolly) Hence we can WLOG assume that .
From we get that .
From we get that .
Hence , and the sum of possible values is .
Solution 3
Let Note that we have
Note that must be positive however, the only arrangements of and signs on the RHS which make positive are (There are no cases with or more negative as )
Thus, the answer is
Video Solution
~savannahsolver
See Also
2009 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.