# Difference between revisions of "2010 AMC 12B Problems/Problem 14"

## Problem 14

Let $a$, $b$, $c$, $d$, and $e$ be positive integers with $a+b+c+d+e=2010$ and let $M$ be the largest of the sum $a+b$, $b+c$, $c+d$ and $d+e$. What is the smallest possible value of $M$?

$\textbf{(A)}\ 670 \qquad \textbf{(B)}\ 671 \qquad \textbf{(C)}\ 802 \qquad \textbf{(D)}\ 803 \qquad \textbf{(E)}\ 804$

## Solution 1

We want to try make $a+b$, $b+c$, $c+d$, and $d+e$ as close as possible so that $M$, the maximum of these, is smallest.

Notice that $2010=670+670+670$. In order to express $2010$ as a sum of $5$ numbers, we must split up some of these numbers. There are two ways to do this (while keeping the sum of two numbers as close as possible): $2010=670+1+670+1+668$ or $2010=670+1+669+1+669$. We see that in both cases, the value of $M$ is $671$, so the answer is $671 \Rightarrow \boxed{B}$.

## Solution 2

Since $a + b \le M$, $d + e \le M$, and $c < b + c \le M$, we have that $2010 = a + b + c + d + e < 3M$. Hence, $M > 670$, or $M \ge 671$.

For the values $(a,b,c,d,e) = (669,1,670,1,669)$, $M = 671$, so the smallest possible value of $M$ is $\boxed{671}$. The answer is (B).

~ math31415926535