# Difference between revisions of "2010 AMC 12B Problems/Problem 16"

## Problem 16

Positive integers $a$, $b$, and $c$ are randomly and independently selected with replacement from the set $\{1, 2, 3,\dots, 2010\}$. What is the probability that $abc + ab + a$ is divisible by $3$? $\textbf{(A)}\ \dfrac{1}{3} \qquad \textbf{(B)}\ \dfrac{29}{81} \qquad \textbf{(C)}\ \dfrac{31}{81} \qquad \textbf{(D)}\ \dfrac{11}{27} \qquad \textbf{(E)}\ \dfrac{13}{27}$

## Solution 1

We group this into groups of $3$, because $3|2010$.

If $3|a$, we are done. There is a probability of $\frac{1}{3}$ that that happens.

Otherwise, we have $3|bc+b+1$, which means that $b(c+1) \equiv 2\pmod{3}$. So either $$b \equiv 1 \pmod{3}, c \equiv 1 \pmod{3}$$ or $$b \equiv 2 \pmod {3}, c \equiv 0 \pmod 3$$ which will lead to the property being true. There are a $\frac{1}{3}\cdot\frac{1}{3}=\frac{1}{9}$ chance for each bundle of cases to be true. Thus, the total for the cases is $\frac{2}{9}$. But we have to multiply by $\frac{2}{3}$ because this only happens with a $\frac{2}{3}$ chance. So the total is actually $\frac{4}{27}$.

The grand total is $$\frac{1}{3} + \frac{4}{27} = \boxed{\text{(E) }\frac{13}{27}.}$$

## Solution 2 (Minor change from Solution 1)

Just like solution 1, we see that there is a $\frac{1}{3}$ chance of $3|a$ and $\frac{2}{9}$ chance of $3|1+b+bc$

Now, we can just use PIE (Principals of Inclusion and Exclusion) to get our answer to be $\frac{1}{3}+\frac{2}{9}-\frac{1}{3}\cdot\frac{2}{9} = \boxed{\frac{13}{27}}$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 