Difference between revisions of "2010 AMC 8 Problems/Problem 10"

(Solution)
m (Undo revision 160331 by Raina0708 (talk) I PM'ed Raina0708 for suggesting NOT to erase LaTeX. So, I will restore the LaTeX code. LaTeX makes solutions more professional.)
(Tag: Undo)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
The pepperoni circles' diameter is 2, since 12/6= 2 From that we see that the area of the 24 circles of pepperoni is 2/2   24π = 24π The large pizza's area is 6^Therefore, the ratio is 24π/36 =2/3
+
The pepperoni circles' diameter is 2, since <math>\dfrac{12}{6} = 2</math>. From that we see that the area of the <math>24</math> circles of pepperoni is <math>\left ( \frac{2}{2} \right )^2 (24\pi) = 24\pi</math>. The large pizza's area is <math>6^2\pi</math>. Therefore, the ratio is <math>\frac{24\pi}{36\pi} = \boxed{\textbf{(B) }\frac{2}{3}}</math>
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2010|num-b=9|num-a=11}}
 
{{AMC8 box|year=2010|num-b=9|num-a=11}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:23, 15 August 2021

Problem

Six pepperoni circles will exactly fit across the diameter of a $12$-inch pizza when placed. If a total of $24$ circles of pepperoni are placed on this pizza without overlap, what fraction of the pizza is covered by pepperoni?

$\textbf{(A)}\ \frac 12 \qquad\textbf{(B)}\ \frac 23 \qquad\textbf{(C)}\ \frac 34 \qquad\textbf{(D)}\ \frac 56 \qquad\textbf{(E)}\ \frac 78$

Solution

The pepperoni circles' diameter is 2, since $\dfrac{12}{6} = 2$. From that we see that the area of the $24$ circles of pepperoni is $\left ( \frac{2}{2} \right )^2 (24\pi) = 24\pi$. The large pizza's area is $6^2\pi$. Therefore, the ratio is $\frac{24\pi}{36\pi} = \boxed{\textbf{(B) }\frac{2}{3}}$

See Also

2010 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png