Difference between revisions of "2011 AMC 10B Problems/Problem 18"
Ilovepi3.14 (talk | contribs) m (→Solution 2) |
Ilovepi3.14 (talk | contribs) (→Solution 2) |
||
Line 47: | Line 47: | ||
Let <math>\angle{DMC} = \angle{AMD} = \theta</math>. If we let <math>AM = x</math>, we have that <math>MD = \sqrt{x^2 + 9}</math>, by the Pythagorean Theorem, and similarily, <math>MC = \sqrt{x^2 - 12x + 45}</math>. Applying LOC, we see that | Let <math>\angle{DMC} = \angle{AMD} = \theta</math>. If we let <math>AM = x</math>, we have that <math>MD = \sqrt{x^2 + 9}</math>, by the Pythagorean Theorem, and similarily, <math>MC = \sqrt{x^2 - 12x + 45}</math>. Applying LOC, we see that | ||
− | <cmath>2x^2 + 54 - 12x - 2 \sqrt{x^4 - 12x^3 + 54x^2 - 108x + 405} \cdot cos (\theta) = 36</cmath> and <cmath>tan (\theta) = \frac{3}{x}</cmath> | + | <cmath>2x^2 + 54 - 12x - 2 \sqrt{x^4 - 12x^3 + 54x^2 - 108x + 405} \cdot cos (\theta) = 36</cmath> and <cmath>tan (\theta) = \frac{3}{x}</cmath> YAY!!! We have two equations for two variables... that are terribly ugly. Well, we'll try to solve it. First of all, note that <math>sin (\theta) = \frac{3}{\sqrt{x^2+9}}</math>, so solving for <math>cos (\theta)</math> in terms of <math>x</math>, we get that <math>cos (\theta) = \frac{x \cdot \sqrt{x^2 + 9}}{x^2 + 9}</math>. The equation now becomes |
<cmath>2x^2 + 54 - 12x - 2 \sqrt{x^4 - 12x^3 + 54x^2 - 108x + 405} \cdot \frac{x \cdot \sqrt{x^2 + 9}}{x^2 + 9} = 36</cmath> | <cmath>2x^2 + 54 - 12x - 2 \sqrt{x^4 - 12x^3 + 54x^2 - 108x + 405} \cdot \frac{x \cdot \sqrt{x^2 + 9}}{x^2 + 9} = 36</cmath> |
Revision as of 19:43, 24 November 2018
Contents
Problem
Rectangle has and . Point is chosen on side so that . What is the degree measure of ?
Solution 1
It is given that . Since and are alternate interior angles and , . Use the Base Angle Theorem to show . We know that is a rectangle, so it follows that . We notice that is a triangle, and . If we let be the measure of then
Solution 2
Let . If we let , we have that , by the Pythagorean Theorem, and similarily, . Applying LOC, we see that and YAY!!! We have two equations for two variables... that are terribly ugly. Well, we'll try to solve it. First of all, note that , so solving for in terms of , we get that . The equation now becomes
Simplifying, we get
Now, we apply the quartic formula to get
We can easily see that is an invalid solution. Thus, .
Finally, since , , where is any integer. Converting to degrees, we have that . Since , we have that .
~ilovepi3.14
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.