Difference between revisions of "2012 AIME II Problems/Problem 10"
Line 29: | Line 29: | ||
Notice that <math>x\lfloor x\rfloor</math> is continuous over the region <math>x \in [k, k+1)</math> for any integer <math>k</math>. Therefore, it takes all values in the range <math>[k\lfloor k\rfloor, (k+1)\lfloor k+1\rfloor) = [k^2, (k+1)k)</math> over that interval. Note that if <math>k>32</math> then <math>k^2 > 1000</math> and if <math>k=31</math>, the maximum value attained is <math>31*32 < 1000</math>. It follows that the answer is <math> \sum_{k=1}^{31} (k+1)k-k^2 = \sum_{k=1}^{31} k = \frac{31\cdot 32}{2} = \boxed{496}.</math> | Notice that <math>x\lfloor x\rfloor</math> is continuous over the region <math>x \in [k, k+1)</math> for any integer <math>k</math>. Therefore, it takes all values in the range <math>[k\lfloor k\rfloor, (k+1)\lfloor k+1\rfloor) = [k^2, (k+1)k)</math> over that interval. Note that if <math>k>32</math> then <math>k^2 > 1000</math> and if <math>k=31</math>, the maximum value attained is <math>31*32 < 1000</math>. It follows that the answer is <math> \sum_{k=1}^{31} (k+1)k-k^2 = \sum_{k=1}^{31} k = \frac{31\cdot 32}{2} = \boxed{496}.</math> | ||
+ | == Solution 3 == | ||
+ | |||
+ | After a bit of experimenting, we let <math>n=l^2+s, s < 2n+1</math>. We claim that I (the integer part of <math>x</math>) = <math>l</math> . (Prove it yourself using contradiction !) so now we get that <math>x=l+\frac{s}{l}</math>. This implies that solutions exist iff <math>s<l</math>, or for all natural numbers of the form <math>l^2+s</math> where <math>s<l</math>. | ||
+ | Hence, 1 solution exists for <math>l=1</math>! 2 for <math>l=2</math> and so on. Therefore our final answer is <math>31+30+\dots+1= \boxed{496}</math> | ||
== See Also == | == See Also == | ||
[[2009 AIME I Problems/Problem 6|2009 AIME I Problems/Problem 6]] | [[2009 AIME I Problems/Problem 6|2009 AIME I Problems/Problem 6]] |
Latest revision as of 04:40, 22 December 2020
Problem 10
Find the number of positive integers less than for which there exists a positive real number such that .
Note: is the greatest integer less than or equal to .
Solution
Solution 1
We know that cannot be irrational because the product of a rational number and an irrational number is irrational (but is an integer). Therefore is rational.
Let where are nonnegative integers and (essentially, is a mixed number). Then,
Here it is sufficient for to be an integer. We can use casework to find values of based on the value of :
nothing because n is positive
The pattern continues up to . Note that if , then . However if , the largest possible is , in which is still less than . Therefore the number of positive integers for is equal to
Solution 2
Notice that is continuous over the region for any integer . Therefore, it takes all values in the range over that interval. Note that if then and if , the maximum value attained is . It follows that the answer is
Solution 3
After a bit of experimenting, we let . We claim that I (the integer part of ) = . (Prove it yourself using contradiction !) so now we get that . This implies that solutions exist iff , or for all natural numbers of the form where . Hence, 1 solution exists for ! 2 for and so on. Therefore our final answer is
See Also
2009 AIME I Problems/Problem 6
2012 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.