Difference between revisions of "2013 AMC 12B Problems/Problem 8"

m (Solution)
Line 4: Line 4:
 
<math>\textbf{(A)}\ \frac{2}{3} \qquad \textbf{(B)}\ \frac{3}{4} \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ \frac{4}{3} \qquad \textbf{(E)}\ \frac{3}{2}</math>
 
<math>\textbf{(A)}\ \frac{2}{3} \qquad \textbf{(B)}\ \frac{3}{4} \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ \frac{4}{3} \qquad \textbf{(E)}\ \frac{3}{2}</math>
  
==Solution==
+
==Solution 1==
  
 
Line <math>l_1</math> has the equation <math>y=3x/2-1/2</math> when rearranged. Substituting <math>1</math> for <math>y</math>, we find that line <math>l_2</math> will meet this line at point <math>(1,1)</math>, which is point <math>B</math>. We call <math>\overline{BC}</math> the base and the altitude from <math>A</math> to the line connecting <math>B</math> and <math>C</math>, <math>y=-1</math>, the height. The altitude has length <math>|-2-1|=3</math>, and the area of <math>\triangle{ABC}=3</math>. Since <math>A={bh}/2</math>, <math>b=2</math>. Because <math>l_3</math> has positive slope, it will meet <math>l_2</math> to the right of <math>B</math>, and the point <math>2</math> to the right of <math>B</math> is <math>(3,1)</math>. <math>l_3</math> passes through <math>(-1,-2)</math> and <math>(3,1)</math>, and thus has slope <math>\frac{|1-(-2)|}{|3-(-1)|}=</math> <math>\boxed{\textbf{(B) }\frac{3}{4}}</math>.
 
Line <math>l_1</math> has the equation <math>y=3x/2-1/2</math> when rearranged. Substituting <math>1</math> for <math>y</math>, we find that line <math>l_2</math> will meet this line at point <math>(1,1)</math>, which is point <math>B</math>. We call <math>\overline{BC}</math> the base and the altitude from <math>A</math> to the line connecting <math>B</math> and <math>C</math>, <math>y=-1</math>, the height. The altitude has length <math>|-2-1|=3</math>, and the area of <math>\triangle{ABC}=3</math>. Since <math>A={bh}/2</math>, <math>b=2</math>. Because <math>l_3</math> has positive slope, it will meet <math>l_2</math> to the right of <math>B</math>, and the point <math>2</math> to the right of <math>B</math> is <math>(3,1)</math>. <math>l_3</math> passes through <math>(-1,-2)</math> and <math>(3,1)</math>, and thus has slope <math>\frac{|1-(-2)|}{|3-(-1)|}=</math> <math>\boxed{\textbf{(B) }\frac{3}{4}}</math>.
 +
 +
==Solution 2 - Shoelace Theorem==
 +
 +
We know lines <math>l_1</math> and <math>l_2</math> intersect at <math>B</math>, so we can solve for that point:
 +
<cmath>3x-2y=1</cmath>
 +
Because <math>y = 1</math> we have:
 +
<cmath>3x-2(1) = 1</cmath>
 +
<cmath>3x-2=1</cmath>
 +
<cmath>3x=3</cmath>
 +
<cmath>x = 1</cmath>
 +
 +
Thus we have <math>B = (1,1)</math>.
 +
 +
We know that the area of the triangle is <math>3</math>, so by Shoelace Theorem we have:
 +
 +
<math></math>A = \dfrac{1}{2} |(-2x+y-1) - (-2+x-y)|<math>
 +
<cmath>A = \dfrac{1}{2} |-2x+y-1+2-x+y|</cmath>
 +
<cmath>3 = \dfrac{1}{2} |-2x+y-1+2-x+y|</cmath>
 +
<cmath>6 = |-3x+2y+1|.</cmath>
 +
 +
Thus we have two options:
 +
 +
<cmath>6 = -3x+2y+1</cmath>
 +
<cmath>5 = -3x+2y</cmath>
 +
 +
or
 +
 +
<cmath>6 = 3x-2y-1</cmath>
 +
<cmath>7 = 3x-2y.</cmath>
 +
 +
Now we must just find a point that satisfies </math>m_{l_3}<math> is positive.
 +
 +
Doing some guess-and-check yields, from the second equation:
 +
 +
<cmath>7 = 3x-2y</cmath>
 +
<cmath>7 = 3(3)-2(1)</cmath>
 +
<cmath>7 = 7</cmath>
 +
 +
so a valid point here is </math>(3,1)<math>. When calculated, the slope of </math>l_3<math> in this situation yields </math>\boxed{\dfrac{3}{4}}$.
  
 
==Video Solution==
 
==Video Solution==

Revision as of 12:19, 6 November 2021

Problem

Line $l_1$ has equation $3x - 2y = 1$ and goes through $A = (-1, -2)$. Line $l_2$ has equation $y = 1$ and meets line $l_1$ at point $B$. Line $l_3$ has positive slope, goes through point $A$, and meets $l_2$ at point $C$. The area of $\triangle ABC$ is $3$. What is the slope of $l_3$?

$\textbf{(A)}\ \frac{2}{3} \qquad \textbf{(B)}\ \frac{3}{4} \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ \frac{4}{3} \qquad \textbf{(E)}\ \frac{3}{2}$

Solution 1

Line $l_1$ has the equation $y=3x/2-1/2$ when rearranged. Substituting $1$ for $y$, we find that line $l_2$ will meet this line at point $(1,1)$, which is point $B$. We call $\overline{BC}$ the base and the altitude from $A$ to the line connecting $B$ and $C$, $y=-1$, the height. The altitude has length $|-2-1|=3$, and the area of $\triangle{ABC}=3$. Since $A={bh}/2$, $b=2$. Because $l_3$ has positive slope, it will meet $l_2$ to the right of $B$, and the point $2$ to the right of $B$ is $(3,1)$. $l_3$ passes through $(-1,-2)$ and $(3,1)$, and thus has slope $\frac{|1-(-2)|}{|3-(-1)|}=$ $\boxed{\textbf{(B) }\frac{3}{4}}$.

Solution 2 - Shoelace Theorem

We know lines $l_1$ and $l_2$ intersect at $B$, so we can solve for that point: \[3x-2y=1\] Because $y = 1$ we have: \[3x-2(1) = 1\] \[3x-2=1\] \[3x=3\] \[x = 1\]

Thus we have $B = (1,1)$.

We know that the area of the triangle is $3$, so by Shoelace Theorem we have:

$$ (Error compiling LaTeX. Unknown error_msg)A = \dfrac{1}{2} |(-2x+y-1) - (-2+x-y)|$<cmath>A = \dfrac{1}{2} |-2x+y-1+2-x+y|</cmath> <cmath>3 = \dfrac{1}{2} |-2x+y-1+2-x+y|</cmath> <cmath>6 = |-3x+2y+1|.</cmath>

Thus we have two options:

<cmath>6 = -3x+2y+1</cmath> <cmath>5 = -3x+2y</cmath>

or

<cmath>6 = 3x-2y-1</cmath> <cmath>7 = 3x-2y.</cmath>

Now we must just find a point that satisfies$ (Error compiling LaTeX. Unknown error_msg)m_{l_3}$is positive.

Doing some guess-and-check yields, from the second equation:

<cmath>7 = 3x-2y</cmath> <cmath>7 = 3(3)-2(1)</cmath> <cmath>7 = 7</cmath>

so a valid point here is$ (Error compiling LaTeX. Unknown error_msg)(3,1)$. When calculated, the slope of$l_3$in this situation yields$\boxed{\dfrac{3}{4}}$.

Video Solution

https://youtu.be/a-3CAo4CoWc

~Punxsutawney Phil or sugar_rush

See also

2013 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png