# 2014 AMC 10A Problems/Problem 2

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Roy's cat eats $\frac{1}{3}$ of a can of cat food every morning and $\frac{1}{4}$ of a can of cat food every evening. Before feeding his cat on Monday morning, Roy opened a box containing $6$ cans of cat food. On what day of the week did the cat finish eating all the cat food in the box? $\textbf{(A)}\ \text{Tuesday}\qquad\textbf{(B)}\ \text{Wednesday}\qquad\textbf{(C)}\ \text{Thursday}\qquad\textbf{(D)}\ \text{Friday}\qquad\textbf{(E)}\ \text{Saturday}$

## Solution

Each day, the cat eats $\dfrac13+\dfrac14=\dfrac7{12}$ of a can of cat food. Therefore, the cat food will last for $\dfrac{6}{\frac7{12}}=\dfrac{72}7$ days, which is greater than $10$ days but less than $11$ days.

Because the number of days is greater than 10 and less than 11, the cat will finish eating in on the 11th day, which is equal to $10$ days after Monday, or $\boxed{\textbf{(C)}\ \text{Thursday}}$

## Video Solution

~savannahsolver

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 