# 2014 AMC 8 Problems/Problem 19

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

A cube with $3$-inch edges is to be constructed from $27$ smaller cubes with $1$-inch edges. Twenty-one of the cubes are colored red and $6$ are colored white. If the $3$-inch cube is constructed to have the smallest possible white surface area showing, what fraction of the surface area is white?

$\textbf{(A) }\frac{5}{54}\qquad\textbf{(B) }\frac{1}{9}\qquad\textbf{(C) }\frac{5}{27}\qquad\textbf{(D) }\frac{2}{9}\qquad\textbf{(E) }\frac{1}{3}$

## Solution

For the least possible surface area that is white, we should have 1 cube in the center, and the other 5 with only 1 face exposed. This gives 5 square inches of white surface area. Since the cube has a surface area of 54 square inches, our answer is $\boxed{\textbf{(A) }\frac{5}{54}}$.

 2014 AMC 8 (Problems • Answer Key • Resources) Preceded byProblem 18 Followed byProblem 20 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions