# 2014 AMC 8 Problems/Problem 24

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

One day the Beverage Barn sold $252$ cans of soda to $100$ customers, and every customer bought at least one can of soda. What is the maximum possible median number of cans of soda bought per customer on that day? $\textbf{(A) }2.5\qquad\textbf{(B) }3.0\qquad\textbf{(C) }3.5\qquad\textbf{(D) }4.0\qquad \textbf{(E) }4.5$

## Video Solution

https://youtu.be/VlJzQ-ZNmmk ~savannahsolver

## Solution

In order to maximize the median, we need to make the first half of the numbers as small as possible. Since there are $100$ people, the median will be the average of the $50\text{th}$ and $51\text{st}$ largest amount of cans per person. To minimize the first $49$, they would each have one can. Subtracting these $49$ cans from the $252$ cans gives us $203$ cans left to divide among $51$ people. Taking $\frac{203}{51}$ gives us $3$ and a remainder of $50$. Seeing this, the largest number of cans the $50$th person could have is $3$, which leaves $4$ to the rest of the people. The average of $3$ and $4$ is $3.5$. Thus our answer is $\boxed{\text{(C) }3.5}$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 