2016 AMC 8 Problems


Problem 1

The longest professional tennis match lasted a total of 11 hours and 5 minutes. How many minutes was that?

$\textbf{(A)} 605 \qquad\textbf{(B)} 655\qquad\textbf{(C)} 665\qquad\textbf{(D)} 1005\qquad \textbf{(E)} 1105$

Solution

Problem 2

In rectangle $ABCD$, $AB=6$ and $AD=8$. Point $M$ is the midpoint of $\overline{AD}$. What is the area of $\triangle AMC$?

$\textbf{(A) }12\qquad\textbf{(B) }15\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad \textbf{(E) }24$

Solution

Problem 3

Four students take an exam. Three of their scores are $70, 80,$ and $90$. If the average of their four scores is $70$, then what is the remaining score?

$\textbf{(A) }40\qquad\textbf{(B) }50\qquad\textbf{(C) }55\qquad\textbf{(D) }60\qquad \textbf{(E) }70$

Solution

Problem 4

When Cheenu was a boy he could run $15$ miles in $3$ hours and $30$ minutes. As an old man he can now walk $10$ miles in $4$ hours. How many minutes longer does it take for him to travel a mile now compared to when he was a boy?

$\textbf{(A) }6\qquad\textbf{(B) }10\qquad\textbf{(C) }15\qquad\textbf{(D) }18\qquad \textbf{(E) }30$

Solution

Problem 5

The number $N$ is a two-digit number.

• When $N$ is divided by $9$, the remainder is $1$.

• When $N$ is divided by $10$, the remainder is $3$.

What is the remainder when $N$ is divided by $11$?


$\textbf{(A) }0\qquad\textbf{(B) }2\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad \textbf{(E) }7$

Solution

Problem 6

The following bar graph represents the length (in letters) of the names of 19 people. What is the median length of these names? $\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad \textbf{(E) }7$ [asy] unitsize(0.9cm); draw((-0.5,0)--(10,0), linewidth(1.5)); draw((-0.5,1)--(10,1)); draw((-0.5,2)--(10,2)); draw((-0.5,3)--(10,3)); draw((-0.5,4)--(10,4)); draw((-0.5,5)--(10,5)); draw((-0.5,6)--(10,6)); draw((-0.5,7)--(10,7)); label("frequency",(-0.5,8)); label("0", (-1, 0)); label("1", (-1, 1)); label("2", (-1, 2)); label("3", (-1, 3)); label("4", (-1, 4)); label("5", (-1, 5)); label("6", (-1, 6)); label("7", (-1, 7)); filldraw((0,0)--(0,7)--(1,7)--(1,0)--cycle, black); filldraw((2,0)--(2,3)--(3,3)--(3,0)--cycle, black); filldraw((4,0)--(4,1)--(5,1)--(5,0)--cycle, black); filldraw((6,0)--(6,4)--(7,4)--(7,0)--cycle, black); filldraw((8,0)--(8,4)--(9,4)--(9,0)--cycle, black); label("3", (0.5, -0.5)); label("4", (2.5, -0.5)); label("5", (4.5, -0.5)); label("6", (6.5, -0.5)); label("7", (8.5, -0.5)); label("name length", (4.5, -1)); [/asy]

Solution


Problem 7

Which of the following numbers is not a perfect square?

$\textbf{(A) }1^{2016}\qquad\textbf{(B) }2^{2017}\qquad\textbf{(C) }3^{2018}\qquad\textbf{(D) }4^{2019}\qquad \textbf{(E) }5^{2020}$

Solution

Problem 8

Find the value of the expression \[100-98+96-94+92-90+\cdots+8-6+4-2.\]$\textbf{(A) }20\qquad\textbf{(B) }40\qquad\textbf{(C) }50\qquad\textbf{(D) }80\qquad \textbf{(E) }100$

Solution

Problem 9

What is the sum of the distinct prime integer divisors of $2016$?

$\textbf{(A) }9\qquad\textbf{(B) }12\qquad\textbf{(C) }16\qquad\textbf{(D) }49\qquad \textbf{(E) }63$

Solution

Problem 10

Suppose that $a * b$ means $3a-b.$ What is the value of $x$ if \[2 * (5 * x)=1\] $\textbf{(A) }\frac{1}{10} \qquad\textbf{(B) }2\qquad\textbf{(C) }\frac{10}{3} \qquad\textbf{(D) }10\qquad \textbf{(E) }14$

Solution

Problem 11

Determine how many two-digit numbers satisfy the following property: when the number is added to the number obtained by reversing its digits, the sum is $132.$

$\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad \textbf{(E) }12$

Solution

Problem 12

Jefferson Middle School has the same number of boys and girls. $\frac{3}{4}$ of the girls and $\frac{2}{3}$ of the boys went on a field trip. What fraction of the students on the field trip were girls?

$\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{9}{17}\qquad\textbf{(C) }\frac{7}{13}\qquad\textbf{(D) }\frac{2}{3}\qquad \textbf{(E) }\frac{14}{15}$

Solution

Problem 13

Two different numbers are randomly selected from the set ${ - 2, -1, 0, 3, 4, 5}$ and multiplied together. What is the probability that the product is $0$?

$\textbf{(A) }\dfrac{1}{6}\qquad\textbf{(B) }\dfrac{1}{5}\qquad\textbf{(C) }\dfrac{1}{4}\qquad\textbf{(D) }\dfrac{1}{3}\qquad \textbf{(E) }\dfrac{1}{2}$

Solution

Problem 14

Karl's car uses a gallon of gas every $35$ miles, and his gas tank holds $14$ gallons when it is full. One day, Karl started with a full tank of gas, drove $350$ miles, bought $8$ gallons of gas, and continued driving to his destination. When he arrived, his gas tank was half full. How many miles did Karl drive that day?

$\textbf{(A)}\mbox{ }525\qquad\textbf{(B)}\mbox{ }560\qquad\textbf{(C)}\mbox{ }595\qquad\textbf{(D)}\mbox{ }665\qquad\textbf{(E)}\mbox{ }735$

Solution

Problem 15

What is the largest power of $2$ that is a divisor of $13^4 - 11^4$?

$\textbf{(A)}\mbox{ }8\qquad \textbf{(B)}\mbox{ }16\qquad \textbf{(C)}\mbox{ }32\qquad \textbf{(D)}\mbox{ }64\qquad \textbf{(E)}\mbox{ }128$

Solution

Problem 16

Annie and Bonnie are running laps around a $400$-meter oval track. They started together, but Annie has pulled ahead because she runs $25\%$ faster than Bonnie. How many laps will Annie have run when she first passes Bonnie?

$\textbf{(A) }1\dfrac{1}{4}\qquad\textbf{(B) }3\dfrac{1}{3}\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad \textbf{(E) }25$

Solution

Problem 17

An ATM password at Fred's Bank is composed of four digits from $0$ to $9$, with repeated digits allowable. If no password may begin with the sequence $9,1,1,$ then how many passwords are possible?

$\textbf{(A)}\mbox{ }30\qquad\textbf{(B)}\mbox{ }7290\qquad\textbf{(C)}\mbox{ }9000\qquad\textbf{(D)}\mbox{ }9990\qquad\textbf{(E)}\mbox{ }9999$

Solution

Problem 18

In an All-Area track meet, $216$ sprinters enter a $100-$meter dash competition. The track has $6$ lanes, so only $6$ sprinters can compete at a time. At the end of each race, the five non-winners are eliminated, and the winner will compete again in a later race. How many races are needed to determine the champion sprinter?

$\textbf{(A)}\mbox{ }36\qquad\textbf{(B)}\mbox{ }42\qquad\textbf{(C)}\mbox{ }43\qquad\textbf{(D)}\mbox{ }60\qquad\textbf{(E)}\mbox{ }72$

Solution

Problem 19

The sum of $25$ consecutive even integers is $10,000$. What is the largest of these $25$ consecutive integers?

$\textbf{(A)}\mbox{ }360\qquad\textbf{(B)}\mbox{ }388\qquad\textbf{(C)}\mbox{ }412\qquad\textbf{(D)}\mbox{ }416\qquad\textbf{(E)}\mbox{ }424$

Solution

Problem 20

The least common multiple of $a$ and $b$ is $12$, and the least common multiple of $b$ and $c$ is $15$. What is the least possible value of the least common multiple of $a$ and $c$?

$\textbf{(A) }20\qquad\textbf{(B) }30\qquad\textbf{(C) }60\qquad\textbf{(D) }120\qquad \textbf{(E) }180$

Solution

Problem 21

A top hat contains 3 red chips and 2 green chips. Chips are drawn randomly, one at a time without replacement, until all 3 of the reds are drawn or until both green chips are drawn. What is the probability that the 3 reds are drawn?

$\textbf{(A) }\dfrac{3}{10}\qquad\textbf{(B) }\dfrac{2}{5}\qquad\textbf{(C) }\dfrac{1}{2}\qquad\textbf{(D) }\dfrac{3}{5}\qquad \textbf{(E) }\dfrac{7}{10}$

Solution

Problem 22

Rectangle $DEFA$ below is a $3 \times 4$ rectangle with $DC=CB=BA$. What is the area of the "bat wings" (shaded area)? [asy] draw((0,0)--(3,0)--(3,4)--(0,4)--(0,0)--(2,4)--(3,0)); draw((3,0)--(1,4)--(0,0)); fill((0,0)--(1,4)--(1.5,3)--cycle, black); fill((3,0)--(2,4)--(1.5,3)--cycle, black); label("$A$",(3.05,4.2)); label("$B$",(2,4.2)); label("$C$",(1,4.2)); label("$D$",(0,4.2)); label("$E$", (0,-0.2)); label("$F$", (3,-0.2)); [/asy]

$\textbf{(A) }2\qquad\textbf{(B) }2 \frac{1}{2}\qquad\textbf{(C) }3\qquad\textbf{(D) }3 \frac{1}{2}\qquad \textbf{(E) }4$

Solution

Problem 23

Two congruent circles centered at points $A$ and $B$ each pass through the other circle's center. The line containing both $A$ and $B$ is extended to intersect the circles at points $C$ and $D$. The circles intersect at two points, one of which is $E$. What is the degree measure of $\angle CED$?

$\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150$

Solution

Problem 24

The digits $1$, $2$, $3$, $4$, and $5$ are each used once to write a five-digit number $PQRST$. The three-digit number $PQR$ is divisible by $4$, the three-digit number $QRS$ is divisible by $5$, and the three-digit number $RST$ is divisible by $3$. What is $P$?

$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad \textbf{(E) }5$

Solution

Problem 25

A semicircle is inscribed in an isosceles triangle with base $16$ and height $15$ so that the diameter of the semicircle is contained in the base of the triangle as shown. What is the radius of the semicircle?

[asy]draw((0,0)--(8,15)--(16,0)--(0,0)); draw(arc((8,0),7.0588,0,180));[/asy]

$\textbf{(A) }4 \sqrt{3}\qquad\textbf{(B) } \dfrac{120}{17}\qquad\textbf{(C) }10\qquad\textbf{(D) }\dfrac{17\sqrt{2}}{2}\qquad \textbf{(E)} \dfrac{17\sqrt{3}}{2}$

Solution

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS