Difference between revisions of "2017 AMC 10A Problems/Problem 11"

(Solution)
m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
The region consisting of all points in three-dimensional space within 3 units of line segment <math>\overline{AB}</math> has volume 216<math>\pi</math>. What is the length <math>\textit{AB}</math>?
+
The region consisting of all points in three-dimensional space within <math>3</math> units of line segment <math>\overline{AB}</math> has volume <math>216\pi</math>. What is the length <math>\textit{AB}</math>?
  
 
<math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 24</math>
 
<math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 24</math>

Revision as of 20:20, 23 December 2019

Problem

The region consisting of all points in three-dimensional space within $3$ units of line segment $\overline{AB}$ has volume $216\pi$. What is the length $\textit{AB}$?

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 24$

Solution

In order to solve this problem, we must first visualize what the region contained looks like. We know that, in a three dimensional plane, the region consisting of all points within $3$ units of a point would be a sphere with radius $3$. However, we need to find the region containing all points within 3 units of a segment. It can be seen that our region is a cylinder with two hemispheres on either end. We know the volume of our region, so we set up the following equation (the volume of our cylinder + the volume of our two hemispheres will equal $216 \pi$):

$\frac{4 \pi }{3} \cdot 3^3+9 \pi x=216 \pi$, where $x$ is equal to the length of our line segment.

Solving, we find that $x = \boxed{\textbf{(D)}\ 20}$.

Solution 2

Because this is just a cylinder and $2$ "half spheres", and the radius is $3$, the volume of the $2$ half spheres is $4(3^3)/3 \pi = 36 \pi$. Since we also know that the volume of this whole thing is $216 \pi$, we do $216-36$ to get $180 \pi$ as the area of the cylinder. Thus the height is $180 \pi$ over the base, or $180 \pi/9\pi=20$, $D$

Diagram for Solution

http://i.imgur.com/cwNt293.png

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS