# Difference between revisions of "2018 AMC 12B Problems/Problem 15"

## Problem

How many odd positive $3$-digit integers are divisible by $3$ but do not contain the digit $3$?

$\textbf{(A) } 96 \qquad \textbf{(B) } 97 \qquad \textbf{(C) } 98 \qquad \textbf{(D) } 102 \qquad \textbf{(E) } 120$

## Solution 1

Let $\underline{ABC}$ be one such odd positive $3$-digit integer with hundreds digit $A,$ tens digit $B,$ and ones digit $C.$ Since $\underline{ABC}\equiv0\pmod3,$ we need $A+B+C\equiv0\pmod3$ by the divisibility rule for $3.$

As $A\in\{1,2,4,5,6,7,8,9\}$ and $C\in\{1,5,7,9\},$ there are $8$ possibilities for $A$ and $4$ possibilities for $C.$ Note that each ordered pair $(A,C)$ determines the value of $B$ modulo $3,$ so $B$ can be any element in one of the sets $\{0,6,9\},\{1,4,7\},$ or $\{2,5,8\}.$ We conclude that there are always $3$ possibilities for $B.$

By the Multiplication Principle, the answer is $8\cdot4\cdot3=\boxed{\textbf{(A) } 96}.$

~Plasma_Vortex ~MRENTHUSIASM

## Solution 2

Let $\underline{ABC}$ be one such odd positive $3$-digit integer with hundreds digit $A,$ tens digit $B,$ and ones digit $C.$ Since $\underline{ABC}\equiv0\pmod3,$ we need $A+B+C\equiv0\pmod3$ by the divisibility rule for $3.$

As $A\in\{1,2,4,5,6,7,8,9\},B\in\{0,1,2,4,5,6,7,8,9\},$ and $C\in\{1,5,7,9\},$ note that:

1. There are $2$ possibilities for $A\equiv0\pmod3,$ namely $A=6,9.$

There are $3$ possibilities for $A\equiv1\pmod3,$ namely $A=1,4,7.$

There are $3$ possibilities for $A\equiv2\pmod3,$ namely $A=2,5,8.$

2. There are $3$ possibilities for $B\equiv0\pmod3,$ namely $B=0,6,9.$

There are $3$ possibilities for $B\equiv1\pmod3,$ namely $B=1,4,7.$

There are $3$ possibilities for $B\equiv2\pmod3,$ namely $B=2,5,8.$

3. There are $1$ possibility for $C\equiv0\pmod3,$ namely $C=9.$

There are $2$ possibilities for $C\equiv1\pmod3,$ namely $C=1,7.$

There are $1$ possibility for $C\equiv2\pmod3,$ namely $C=5.$

We apply casework to $A+B+C\equiv0\pmod3:$ $$\begin{array}{c|c|c||l} & & & \\ [-2.5ex] \boldsymbol{A\operatorname{mod}3} & \boldsymbol{B\operatorname{mod}3} & \boldsymbol{C\operatorname{mod}3} & \multicolumn{1}{c}{\textbf{Count}} \\ [0.5ex] \hline & & & \\ [-2ex] 0 & 0 & 0 & 2\cdot3\cdot1=6 \\ 0 & 1 & 2 & 2\cdot3\cdot1=6 \\ 0 & 2 & 1 & 2\cdot3\cdot2=12 \\ 1 & 0 & 2 & 3\cdot3\cdot1=9 \\ 1 & 1 & 1 & 3\cdot3\cdot2=18 \\ 1 & 2 & 0 & 3\cdot3\cdot1=9 \\ 2 & 0 & 1 & 3\cdot3\cdot2=18 \\ 2 & 1 & 0 & 3\cdot3\cdot1=9 \\ 2 & 2 & 2 & 3\cdot3\cdot1=9 \end{array}$$ Together, the answer is $6+6+12+9+18+9+18+9+9=\boxed{\textbf{(A) } 96}.$

~MRENTHUSIASM

## Solution 3

Analyze that the three-digit integers divisible by $3$ start from $102.$ In the $200$'s, it starts from $201.$ In the $300$'s, it starts from $300.$ We see that the units digits is $0, 1,$ and $2.$

Write out the $1$- and $2$-digit multiples of $3$ starting from $0, 1,$ and $2.$ Count up the ones that meet the conditions. Then, add up and multiply by $3,$ since there are three sets of three from $1$ to $9.$ Then, subtract the amount that started from $0,$ since the $300$'s ll contain the digit $3.$

Together, the answer is $3(12+12+12)-12=\boxed{\textbf{(A) } 96}.$

## Solution 4

Consider the number of $2$-digit numbers that do not contain the digit $3,$ which is $90-18=72.$ For any of these $2$-digit numbers, we can append $1,5,7,$ or $9$ to reach a desirable $3$-digit number. However, we have $7 \equiv 1\pmod{3},$ and thus we need to count any $2$-digit number $\equiv 2\pmod{3}$ twice. There are $(98-11)/3+1=30$ total such numbers that have remainder $2,$ but $6$ of them $(23,32,35,38,53,83)$ contain $3,$ so the number we want is $30-6=24.$ Therefore, the final answer is $72+24= \boxed{\textbf{(A) } 96}.$

## Solution 5

We need to take care of all restrictions. Ranging from $101$ to $999,$ there are $450$ odd $3$-digit numbers. Exactly $\frac{1}{3}$ of these numbers are divisible by $3,$ which is $450\cdot\frac{1}{3}=150.$ Of these $150$ numbers, $\frac{4}{5}$ $\textbf{do not}$ have $3$ in their ones (units) digit, $\frac{9}{10}$ $\textbf{do not}$ have $3$ in their tens digit, and $\frac{8}{9}$ $\textbf{do not}$ have $3$ in their hundreds digit. Thus, the total number of $3$-digit integers is $$900\cdot\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{4}{5}\cdot\frac{9}{10}\cdot\frac{8}{9}=\boxed{\textbf{(A) } 96}.$$

~mathpro12345

~ pi_is_3.14