Difference between revisions of "2018 AMC 12B Problems/Problem 23"

m (Solution 2 (Coordinate Geometry: Vectors))
Line 31: Line 31:
 
Let <math>D</math> be the orthogonal projection of <math>B</math> onto the equator. Note that <math>\angle BDA = \angle BDC = 90^\circ, \angle BCD = 45^\circ,</math> and <math>\angle ACD=135^\circ.</math>
 
Let <math>D</math> be the orthogonal projection of <math>B</math> onto the equator. Note that <math>\angle BDA = \angle BDC = 90^\circ, \angle BCD = 45^\circ,</math> and <math>\angle ACD=135^\circ.</math>
  
Without the loss of generality, let <math>AC=BC=1.</math> We place the diagram in the <math>xyz</math>-plane with <math>C=(0,0,0)</math> such that the positive <math>x</math>-axis runs through <math>A,</math> the positive <math>y</math>-axis runs through <math>0^\circ</math> latitude and <math>160^\circ \text{ W}</math> longitude, and the positive <math>z</math>-axis runs through the North Pole.
+
Without the loss of generality, let <math>AC=BC=1.</math> As shown below, we place Earth in the <math>xyz</math>-plane with <math>C=(0,0,0)</math> such that the positive <math>x</math>-axis runs through <math>A,</math> the positive <math>y</math>-axis runs through <math>0^\circ</math> latitude and <math>160^\circ \text{ W}</math> longitude, and the positive <math>z</math>-axis runs through the North Pole.
  
 
It follows that <math>D=(-t,t,0)</math> for some positive number <math>t.</math> Since <math>\triangle BCD</math> is an isosceles right triangle, we have <math>B=\left(-t,t,\sqrt{2}t\right).</math> By the Distance Formula, we get <math>(-t)^2+t^2+\left(\sqrt{2}t\right)^2=1,</math> from which <math>t=\frac12.</math>
 
It follows that <math>D=(-t,t,0)</math> for some positive number <math>t.</math> Since <math>\triangle BCD</math> is an isosceles right triangle, we have <math>B=\left(-t,t,\sqrt{2}t\right).</math> By the Distance Formula, we get <math>(-t)^2+t^2+\left(\sqrt{2}t\right)^2=1,</math> from which <math>t=\frac12.</math>

Revision as of 03:28, 5 November 2021

Problem

Ajay is standing at point $A$ near Pontianak, Indonesia, $0^\circ$ latitude and $110^\circ \text{ E}$ longitude. Billy is standing at point $B$ near Big Baldy Mountain, Idaho, USA, $45^\circ \text{ N}$ latitude and $115^\circ \text{ W}$ longitude. Assume that Earth is a perfect sphere with center $C.$ What is the degree measure of $\angle ACB?$

$\textbf{(A) }105 \qquad \textbf{(B) }112\frac{1}{2} \qquad \textbf{(C) }120 \qquad \textbf{(D) }135 \qquad \textbf{(E) }150 \qquad$

Diagram

IN CONSTRUCTION ... NO EDIT PLEASE ... WILL FINISH BY TODAY ...

Solution 1 (Tetrahedron)

This solution refers to the Diagram section.

Let $D$ be the orthogonal projection of $B$ onto the equator. Note that $\angle BDA = \angle BDC = 90^\circ, \angle BCD = 45^\circ,$ and $\angle ACD=135^\circ.$

Without the loss of generality, let $AC=BC=1.$ For tetrahedron $ABCD:$

  1. Since $\triangle BCD$ is an isosceles right triangle, we have $BD=CD=\frac{\sqrt2}{2}.$
  2. In $\triangle ACD,$ we apply the Law of Cosines to get $AD=\sqrt{AC^2+CD^2-2\cdot AC\cdot CD\cdot\cos\angle ACD}=\frac{\sqrt{10}}{2}.$
  3. In right $\triangle ABD,$ we apply the Pythagorean Theorem to get $AB=\sqrt{AD^2+BD^2}=\sqrt{3}.$
  4. In $\triangle ABC,$ we apply the Law of Cosines to get $\cos\angle ACB=\frac{AC^2+BC^2-AB^2}{2\cdot AC\cdot BC}=-\frac12,$ so $\angle ACB=\boxed{\textbf{(C) }120}$ degrees.

~MRENTHUSIASM

Solution 2 (Coordinate Geometry: Vectors)

This solution refers to the Diagram section.

Let $D$ be the orthogonal projection of $B$ onto the equator. Note that $\angle BDA = \angle BDC = 90^\circ, \angle BCD = 45^\circ,$ and $\angle ACD=135^\circ.$

Without the loss of generality, let $AC=BC=1.$ As shown below, we place Earth in the $xyz$-plane with $C=(0,0,0)$ such that the positive $x$-axis runs through $A,$ the positive $y$-axis runs through $0^\circ$ latitude and $160^\circ \text{ W}$ longitude, and the positive $z$-axis runs through the North Pole.

It follows that $D=(-t,t,0)$ for some positive number $t.$ Since $\triangle BCD$ is an isosceles right triangle, we have $B=\left(-t,t,\sqrt{2}t\right).$ By the Distance Formula, we get $(-t)^2+t^2+\left(\sqrt{2}t\right)^2=1,$ from which $t=\frac12.$

As $\overrightarrow{CA} = \begin{pmatrix}1 \\ 0 \\ 0 \end{pmatrix}$ and $\overrightarrow{CB} = \begin{pmatrix}-1/2 \\ 1/2 \\ \sqrt2/2 \end{pmatrix},$ we obtain \[\cos\angle ACB=\frac{\overrightarrow{CA}\bullet\overrightarrow{CB}}{\left\lVert\overrightarrow{CA}\right\rVert\left\lVert\overrightarrow{CB}\right\rVert}=-\frac12,\] so $\angle ACB=\boxed{\textbf{(C) }120}$ degrees.

~MRENTHUSIASM

Solution 3 (Coordinate Geometry: Spherical Coordinates)

IN CONSTRUCTION ... NO EDIT PLEASE ... WILL FINISH BY TODAY ...

See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png