# Difference between revisions of "2018 AMC 12B Problems/Problem 9"

## Problem

What is $$\sum^{100}_{i=1} \sum^{100}_{j=1} (i+j) ?$$

$\textbf{(A) }100,100 \qquad \textbf{(B) }500,500\qquad \textbf{(C) }505,000 \qquad \textbf{(D) }1,001,000 \qquad \textbf{(E) }1,010,000 \qquad$

## Solution 1

We can start by writing out the first couple of terms:

$$(1+1) + (1+2) + (1+3) + \dots + (1+100)$$ $$(2+1) + (2+2) + (2+3) + \dots + (2+100)$$ $$(3+1) + (3+2) + (3+3) + \dots + (3+100)$$ $$\vdots$$ $$(100+1) + (100+2) + (100+3) + \dots + (100+100)$$

Looking at the second terms in the parentheses, we can see that $1+2+3+\dots+100$ occurs $100$ times. It goes horizontally and exists $100$ times vertically. Looking at the first terms in the parentheses, we can see that $1+2+3+\dots+100$ occurs $100$ times. It goes vertically and exists $100$ times horizontally.

Thus, we have: $$2\left(\dfrac{100\cdot101}{2}\cdot 100\right).$$

This gives us: $$\boxed{\textbf{(E) } 1010000}.$$

## Solution 2

$$\sum^{100}_{i=1} \sum^{100}_{j=1} (i+j) = \sum^{100}_{i=1} 100i+5050 = 100 \cdot 5050 + 5050 \cdot 100 = \boxed{1,010,000}$$

## Solution 3

$$\sum^{100}_{i=1} \sum^{100}_{j=1} (i+j) = \sum^{100}_{i=1} \sum^{100}_{i=1} 2i = (100)*(5050*2) = \boxed{1,010,000}$$

## See Also

 2018 AMC 12B (Problems • Answer Key • Resources) Preceded byProblem 8 Followed byProblem 10 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Invalid username
Login to AoPS