Difference between revisions of "2019 AMC 10A Problems/Problem 15"
(→Solution 2) |
Shurong.ge (talk | contribs) (→Solution 1) |
||
Line 8: | Line 8: | ||
<math>\textbf{(A) } 2020 \qquad\textbf{(B) } 4039 \qquad\textbf{(C) } 6057 \qquad\textbf{(D) } 6061 \qquad\textbf{(E) } 8078</math> | <math>\textbf{(A) } 2020 \qquad\textbf{(B) } 4039 \qquad\textbf{(C) } 6057 \qquad\textbf{(D) } 6061 \qquad\textbf{(E) } 8078</math> | ||
− | ==Solution 1== | + | ==Solution 1 (Induction)== |
Using the recursive formula, we find <math>a_3=\frac{3}{11}</math>, <math>a_4=\frac{3}{15}</math>, and so on. It appears that <math>a_n=\frac{3}{4n-1}</math>, for all <math>n</math>. Setting <math>n=2019</math>, we find <math>a_{2019}=\frac{3}{8075}</math>, so the answer is <math>\boxed{\textbf{(E) }8078}</math>. | Using the recursive formula, we find <math>a_3=\frac{3}{11}</math>, <math>a_4=\frac{3}{15}</math>, and so on. It appears that <math>a_n=\frac{3}{4n-1}</math>, for all <math>n</math>. Setting <math>n=2019</math>, we find <math>a_{2019}=\frac{3}{8075}</math>, so the answer is <math>\boxed{\textbf{(E) }8078}</math>. |
Revision as of 01:56, 5 January 2020
- The following problem is from both the 2019 AMC 10A #15 and 2019 AMC 12A #9, so both problems redirect to this page.
Problem
A sequence of numbers is defined recursively by , , and for all Then can be written as , where and are relatively prime positive integers. What is
Solution 1 (Induction)
Using the recursive formula, we find , , and so on. It appears that , for all . Setting , we find , so the answer is .
To prove this formula, we use induction. We are given that and , which satisfy our formula. Now assume the formula holds true for all for some positive integer . By our assumption, and . Using the recursive formula, so our induction is complete.
Solution 2
Since we are interested in finding the sum of the numerator and the denominator, consider the sequence defined by .
We have , so in other words, .
By recursively following this pattern, we can see that .
By plugging in 2019, we thus find . Since the numerator and the denominator are relatively prime, the answer is .
-eric2020
Solution 3
It seems reasonable to transform the equation into something else. Let , , and . Therefore, we have Thus, is the harmonic mean of and . This implies is a harmonic sequence or equivalently is arithmetic. Now, we have , , , and so on. Since the common difference is , we can express explicitly as . This gives which implies . ~jakeg314
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.