Difference between revisions of "2019 AMC 10A Problems/Problem 2"

(Solution 2 is wrong since divisibility by 100 doesn't imply the hundreds digit of their difference is 0.)
(Solution 3)
 
(5 intermediate revisions by 5 users not shown)
Line 4: Line 4:
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5</math>
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5</math>
  
== Solution ==
+
==Video Solution 1==
  
The last three digits of <math>n!</math> for all <math>n\geq15</math> are <math>000</math>, because there are at least three <math>2</math>s and three <math>5</math>s in its prime factorization. Because <math>0-0=0</math>, the answer is <math>\boxed{\textbf{(A) }0}</math>.
+
https://youtu.be/J4Bqztwjyxw
  
==Video Solution==
+
Education, The Study of Everything
 +
 
 +
 
 +
 
 +
==Video Solution 2==
 
https://youtu.be/V1fY0oLSHvo
 
https://youtu.be/V1fY0oLSHvo
  
 
~savannahsolver
 
~savannahsolver
 +
 +
== Video Solution == 3
 +
https://youtu.be/zfChnbMGLVQ?t=3899
 +
 +
~ pi_is_3.14
 +
 +
==Solution 3==
 +
Because we know that <math>5^3</math> is a factor of <math>15!</math> and <math>20!</math>, the last three digits of both numbers is a 0, this means that the difference of the hundreds digits is also <math>\boxed{\text{(A) }0}</math>.
  
 
==See Also==
 
==See Also==

Latest revision as of 15:27, 25 January 2021

Problem

What is the hundreds digit of $(20!-15!)?$

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5$

Video Solution 1

https://youtu.be/J4Bqztwjyxw

Education, The Study of Everything


Video Solution 2

https://youtu.be/V1fY0oLSHvo

~savannahsolver

== Video Solution == 3 https://youtu.be/zfChnbMGLVQ?t=3899

~ pi_is_3.14

Solution 3

Because we know that $5^3$ is a factor of $15!$ and $20!$, the last three digits of both numbers is a 0, this means that the difference of the hundreds digits is also $\boxed{\text{(A) }0}$.

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS