2020 AIME II Problems/Problem 12

Revision as of 03:58, 8 June 2020 by Mn28407 (talk | contribs) (Math mode formatting)

Problem

Let $m$ and $n$ be odd integers greater than $1.$ An $m\times n$ rectangle is made up of unit squares where the squares in the top row are numbered left to right with the integers $1$ through $n$, those in the second row are numbered left to right with the integers $n + 1$ through $2n$, and so on. Square $200$ is in the top row, and square $2000$ is in the bottom row. Find the number of ordered pairs $(m,n)$ of odd integers greater than $1$ with the property that, in the $m\times n$ rectangle, the line through the centers of squares $200$ and $2000$ intersects the interior of square $1099$.

Solution

Let us take some cases. Since $m$ and $n$ are odds, and $200$ is in the top row and $2000$ in the bottom, $m$ has to be $3$, $5$, $7$, or $9$. Also, taking a look at the diagram, the slope of the line connecting those centers has to have an absolute value of $< 1$. Therefore, $m < 1800 \mod n < 1800-m$.

If $m=3$, $n$ can range from $667$ to $999$. However, $900$ divides $1800$, so looking at mods, we can easily eliminate $899$ and $901$. Now, counting these odd integers, we get $167 - 2 = 165$.

Similarly, let $m=5$. Then $n$ can range from $401$ to $499$. However, $450|1800$, so one can remove $449$ and $451$. Counting odd integers, we get $50 - 2 = 48$.

Take $m=7$. Then, $n$ can range from $287$ to $333$. However, $300|1800$, so one can verify and eliminate $299$ and $301$. Counting odd integers, we get $24 - 2 = 22$.

Let $m = 9$. Then $n can vary from$223$to$249$. However,$225|1800$. Checking that value and the values around it, we can eliminate$225$. Counting odd integers, we get$14 - 1 = 13$.

Add all of our cases to get \[165+48+22+13 = \boxed{248}\]

-Solution by thanosaops

See Also

2020 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png