# Difference between revisions of "2020 AMC 8 Problems/Problem 15"

## Problem

Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$

$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$

## Solution 1

Since $20\% = \frac{1}{5}$, multiplying the given condition by $5$ shows that $y$ is $15 \cdot 5 = \boxed{\textbf{(C) }75}$ percent of $x$.

## Solution 2

Letting $x=100$ (without loss of generality), the condition becomes $0.15\cdot 100 = 0.2\cdot y \Rightarrow 15 = \frac{y}{5} \Rightarrow y=75$. Clearly, it follows that $y$ is $75\%$ of $x$, so the answer is $\boxed{\textbf{(C) }75}$.

## Solution 3

We have $15\%=\frac{3}{20}$ and $20\%=\frac{1}{5}$, so $\frac{3}{20}x=\frac{1}{5}y$. Solving for $y$, we multiply by $5$ to give $y = \frac{15}{20}x = \frac{3}{4}x$, so the answer is $\boxed{\textbf{(C) }75}$.

## Solution 4

We are given $0.15x = 0.20y$, so we may assume without loss of generality that $x=20$ and $y=15$. This means $\frac{y}{x}=\frac{15}{20}=\frac{75}{100}$, and thus answer is $\boxed{\textbf{(C) }75}$.

## Video Solution

 2020 AMC 8 (Problems • Answer Key • Resources) Preceded byProblem 14 Followed byProblem 16 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions