# 2020 AMC 8 Problems/Problem 4

Three hexagons of increasing size are shown below. Suppose the dot pattern continues so that each successive hexagon contains one more band of dots. How many dots are in the next hexagon? $[asy] size(250); real side1 = 1.5; real side2 = 4.0; real side3 = 6.5; real pos = 2.5; pair s1 = (-10,-2.19); pair s2 = (15,2.19); pen grey1 = rgb(100/256, 100/256, 100/256); pen grey2 = rgb(183/256, 183/256, 183/256); fill(circle(origin + s1, 1), grey1); for (int i = 0; i < 6; ++i) { draw(side1*dir(60*i)+s1--side1*dir(60*i-60)+s1,linewidth(1.25)); } fill(circle(origin, 1), grey1); for (int i = 0; i < 6; ++i) { fill(circle(pos*dir(60*i),1), grey2); draw(side2*dir(60*i)--side2*dir(60*i-60),linewidth(1.25)); } fill(circle(origin+s2, 1), grey1); for (int i = 0; i < 6; ++i) { fill(circle(pos*dir(60*i)+s2,1), grey2); fill(circle(2*pos*dir(60*i)+s2,1), grey1); fill(circle(sqrt(3)*pos*dir(60*i+30)+s2,1), grey1); draw(side3*dir(60*i)+s2--side3*dir(60*i-60)+s2,linewidth(1.25)); } [/asy]$

Diagram by sircalcsalot

$\textbf{(A) }35 \qquad \textbf{(B) }37 \qquad \textbf{(C) }39 \qquad \textbf{(D) }43 \qquad \textbf{(E) }49$

## Solution

We find the pattern $1, 6, 12, 18, \ldots$. The sum of the first four numbers in this sequence is $\boxed{\textbf{(B) }37}$.

## Solution 2

The first hexagon has $1$ dot. The second hexagon has $1+6$ dots. The third hexagon $1+6+12$ dots. Following this pattern, we predict that the fourth hexagon will have $1+6+12+18=37$ dots $\implies\boxed{\textbf{(B) }37}$.
~junaidmansuri

## Solution 3

Each band adds $1, 6, 2(6), 3(6), 4(6) \cdots,$ so we have $1+6+2(6)+3(6)=1+6(6)=1+36=\boxed{\textbf{(B) }37}.$

[pog]

## Solution 4

Let the hexagon with $1$ dot be $h_0$. Notice that the rest of the terms are generated by the recurrence relation $h_n=h_{n-1}+6n$ for $n> 0$. Using this, we find that $h_1=7,h_2=19,$ and $h_3=\textbf{(B) }37$.

-franzliszt

## Solution 5

Adding up the dots by rows in each hexagon, we see that the first hexagon has $1$ dot, the second has $2+3+2$ dots and the third has $3+4+5+4+3$ dots. Following the pattern, the fourth hexagon has $4+5+6+7+6+5+4=\boxed{\textbf{(B) }37}$. Note yes this is what you do and if you don't undertstand just add them up to get 37\$.

-vaporwave

## Video Solution

~savannahsolver

 2020 AMC 8 (Problems • Answer Key • Resources) Preceded byProblem 3 Followed byProblem 5 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions