2021 AMC 12B Problems/Problem 10

Revision as of 16:50, 19 July 2023 by Thestudyofeverything (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Two distinct numbers are selected from the set $\{1,2,3,4,\dots,36,37\}$ so that the sum of the remaining $35$ numbers is the product of these two numbers. What is the difference of these two numbers?

$\textbf{(A) }5 \qquad \textbf{(B) }7 \qquad \textbf{(C) }8\qquad \textbf{(D) }9 \qquad \textbf{(E) }10$

Solution

The sum of the first $n$ integers is given by $\frac{n(n+1)}{2}$, so $\frac{37(37+1)}{2}=703$.

Therefore, $703-x-y=xy$

Rearranging, $xy+x+y=703$. We can factor this equation by SFFT to get

$(x+1)(y+1)=704$

Looking at the possible divisors of $704 = 2^6\cdot11$, $22$ and $32$ are within the constraints of $0 < x \leq y \leq 37$ so we try those:

$(x+1)(y+1) = 22\cdot32$

$x+1=22, y+1 = 32$

$x = 21, y = 31$

Therefore, the difference $y-x=31-21=\boxed{\textbf{(E) }10}$.

~ SoySoy4444

~MathFun1000 ($\LaTeX$ help)


Video Solution (Just 2 min!)

https://youtu.be/QBRhWc8BT7U

~Education, the Study of Everything

Video Solution by Punxsutawney Phil

https://YouTube.com/watch?v=yxt8-rUUosI&t=292s

Video Solution by OmegaLearn (Simon's Favorite Factoring Trick)

https://youtu.be/v8MVGAZapKU

~ pi_is_3.14

Video Solution by Hawk Math

https://www.youtube.com/watch?v=p4iCAZRUESs

Video Solution by TheBeautyofMath

https://youtu.be/kuZXQYHycdk?t=1227

~IceMatrix

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png