Difference between revisions of "2021 AMC 12B Problems/Problem 11"

(Solution 2)
(Solutions)
Line 12: Line 12:
 
===Solution 2===
 
===Solution 2===
 
Using Stewart's Theorem we find <math>BP = 8\sqrt{2}</math>. From the similar triangles <math>BPA\sim DPC</math> and <math>BPC\sim EPA</math> we have
 
Using Stewart's Theorem we find <math>BP = 8\sqrt{2}</math>. From the similar triangles <math>BPA\sim DPC</math> and <math>BPC\sim EPA</math> we have
<cmath>DP = BP\cdot\frac{PC}{PA} = \frac{1}{2} BP</cmath>
+
<cmath>DP = BP\cdot\frac{PC}{PA} = 2BP</cmath>
<cmath>EP = BP\cdot\frac{PA}{PC} = 2BP</cmath>
+
<cmath>EP = BP\cdot\frac{PA}{PC} = \frac12 BP</cmath>
 
So
 
So
 
<cmath>DE = \frac{3}{2}BP = \boxed{\textbf{(D) }12\sqrt2}</cmath>
 
<cmath>DE = \frac{3}{2}BP = \boxed{\textbf{(D) }12\sqrt2}</cmath>
 +
 +
===Solution 3===
 +
Let <math>x</math> be the length <math>PE</math>. From the similar triangles <math>BPA\sim DPC</math> and <math>BPC\sim EPA</math> we have
 +
<cmath>BP = \frac{PA}{PC}x = \frac12 x</cmath>
 +
<cmath>PD = \frac{PA}{PC}BP = \frac14 x</cmath>
 +
Therefore <math>BD = DE = \frac{3}{4}x</math>. Now extend line <math>CD</math> to the point <math>Z</math> on <math>AE</math>, forming parallelogram <math>ZABC</math>. As <math>BD = DE</math> we also have <math>EZ = ZC = 13</math> so <math>EC = 26</math>.
 +
 +
We now use the Law of Cosines to find <math>x</math> (the length of <math>PE</math>):
 +
<cmath>x^2 = EC^2 + PC^2 - 2(EC)(PC)\cos{(PCE)} = 26^2 + 10^2 - 2\cdot 26\cdot 10\cos(\angle PCE)</cmath>
 +
As <math>\angle PCE = \angle BAC</math>, we have (by Law of Cosines on triangle <math>BAC</math>)
 +
<cmath>\cos(\angle PCE) = \frac{13^2 + 15^2 - 14^2}{2\cdot 13\cdot 15}.</cmath>
 +
Therefore
 +
<cmath>\begin{align*}
 +
x^2 &= 26^2 + 10^2 - 2\cdot 26\cdot 10\cdot\frac{198}{2\cdot 13\cdot 15}\\
 +
&= 776 - 264\\
 +
&= 512
 +
\end{align*}</cmath>
 +
And <math>x = 16\sqrt2</math>. The answer is then <math>\frac34x = \boxed{\textbf{(D) }12\sqrt2}</math>
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021|ab=B|num-b=10|num-a=12}}
 
{{AMC12 box|year=2021|ab=B|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:40, 11 February 2021

Problem

Triangle $ABC$ has $AB=13,BC=14$ and $AC=15$. Let $P$ be the point on $\overline{AC}$ such that $PC=10$. There are exactly two points $D$ and $E$ on line $BP$ such that quadrilaterals $ABCD$ and $ABCE$ are trapezoids. What is the distance $DE?$

$\textbf{(A) }\frac{42}5 \qquad \textbf{(B) }6\sqrt2 \qquad \textbf{(C) }\frac{84}5\qquad \textbf{(D) }12\sqrt2 \qquad \textbf{(E) }18$

Solutions

Solution 1 (cheese)

Using Stewart's Theorem of $man+dad=bmb+cnc$ calculate the cevian to be $8\sqrt{2}$. It then follows that the answer must also have a factor of the $\sqrt{2}$. Having eliminated 3 answer choices, we then proceed to draw a rudimentary semiaccurate diagram of this figure. Drawing that, we realize that $6\sqrt2$ is too small making out answer $\boxed{\textbf{(D) }12\sqrt2}$ ~Lopkiloinm

Solution 2

Using Stewart's Theorem we find $BP = 8\sqrt{2}$. From the similar triangles $BPA\sim DPC$ and $BPC\sim EPA$ we have \[DP = BP\cdot\frac{PC}{PA} = 2BP\] \[EP = BP\cdot\frac{PA}{PC} = \frac12 BP\] So \[DE = \frac{3}{2}BP = \boxed{\textbf{(D) }12\sqrt2}\]

Solution 3

Let $x$ be the length $PE$. From the similar triangles $BPA\sim DPC$ and $BPC\sim EPA$ we have \[BP = \frac{PA}{PC}x = \frac12 x\] \[PD = \frac{PA}{PC}BP = \frac14 x\] Therefore $BD = DE = \frac{3}{4}x$. Now extend line $CD$ to the point $Z$ on $AE$, forming parallelogram $ZABC$. As $BD = DE$ we also have $EZ = ZC = 13$ so $EC = 26$.

We now use the Law of Cosines to find $x$ (the length of $PE$): \[x^2 = EC^2 + PC^2 - 2(EC)(PC)\cos{(PCE)} = 26^2 + 10^2 - 2\cdot 26\cdot 10\cos(\angle PCE)\] As $\angle PCE = \angle BAC$, we have (by Law of Cosines on triangle $BAC$) \[\cos(\angle PCE) = \frac{13^2 + 15^2 - 14^2}{2\cdot 13\cdot 15}.\] Therefore \begin{align*} x^2 &= 26^2 + 10^2 - 2\cdot 26\cdot 10\cdot\frac{198}{2\cdot 13\cdot 15}\\ &= 776 - 264\\ &= 512 \end{align*} And $x = 16\sqrt2$. The answer is then $\frac34x = \boxed{\textbf{(D) }12\sqrt2}$

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png