Difference between revisions of "2021 AMC 12B Problems/Problem 15"
m |
|||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
The figure is constructed from <math>11</math> line segments, each of which has length <math>2</math>. The area of pentagon <math>ABCDE</math> can be written is <math>\sqrt{m} + \sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers. What is <math>m + n ?</math> | The figure is constructed from <math>11</math> line segments, each of which has length <math>2</math>. The area of pentagon <math>ABCDE</math> can be written is <math>\sqrt{m} + \sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers. What is <math>m + n ?</math> | ||
<asy> | <asy> |
Revision as of 20:46, 11 February 2021
Problem
The figure is constructed from line segments, each of which has length . The area of pentagon can be written is , where and are positive integers. What is
Solution
Let be the midpoint of . Noting that and are triangles because of the equilateral triangles, . Also, and so .
~Lcz
See Also
2021 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.